core.h is kind of a massive header in terms what it includes within
itself. It includes VFS utilities, kernel headers, file_sys header,
ARM-related headers, etc. This means that changing anything in the
headers included by core.h essentially requires you to rebuild almost
all of core.
Instead, we can modify the System class to use the PImpl idiom, which
allows us to move all of those headers to the cpp file and forward
declare the bulk of the types that would otherwise be included, reducing
compile times. This change specifically only performs the PImpl portion.
As means to pave the way for getting rid of global state within core,
This eliminates kernel global state by removing all globals. Instead
this introduces a KernelCore class which acts as a kernel instance. This
instance lives in the System class, which keeps its lifetime contained
to the lifetime of the System class.
This also forces the kernel types to actually interact with the main
kernel instance itself instead of having transient kernel state placed
all over several translation units, keeping everything together. It also
has a nice consequence of making dependencies much more explicit.
This also makes our initialization a tad bit more correct. Previously we
were creating a kernel process before the actual kernel was initialized,
which doesn't really make much sense.
The KernelCore class itself follows the PImpl idiom, which allows
keeping all the implementation details sealed away from everything else,
which forces the use of the exposed API and allows us to avoid any
unnecessary inclusions within the main kernel header.
Makes the class interface consistent and provides accessors for
obtaining a reference to the memory manager instance.
Given we also return references, this makes our more flimsy uses of
const apparent, given const doesn't propagate through pointers in the
way one would typically expect. This makes our mutable state more
apparent in some places.
Rightnow, in games use GetAvailableLanguageCodes(), there is a WriteBuffer() with size larger than the buffer_size. (Core Critical core\hle\kernel\hle_ipc.cpp:WriteBuffer:296: size (0000000000000088) is greater than buffer_size (0000000000000078))
0x88 = 17(languages) * 8
0x78 = 15(languages) * 8
GetAvailableLanguageCodes() can only support 15 languages.
After firmware 4.0.0 there are 17 supported language instead of 15, to enable this GetAvailableLanguageCodes2() need to be used.
So GetAvailableLanguageCodes() will be caped at 15 languages.
Reference:
http://switchbrew.org/index.php/Settings_services
By having the following TTF files in your yuzu sysdata directory. You can load sharedfonts via TTF files.
FontStandard.ttf
FontChineseSimplified.ttf
FontExtendedChineseSimplified.ttf
FontChineseTraditional.ttf
FontKorean.ttf
FontNintendoExtended.ttf
FontNintendoExtended2.ttf
* Added bfttf loading
We can now load system bfttf fonts from system archives AND shared memory dumps. This allows people who have installed their system nand dumps to yuzu to automatically get shared font support. We also now don't hard code the offsets or the sizes of the shared fonts and it's all calculated for us now.
* Addressed plu fixups
* Style changes for plu
* Fixed logic error for plu and added more error checks.
Gets rid of the potential for C array-to-pointer decay, and also makes
pointer arithmetic to get the end of the copy range unnecessary. We can
just use std::array's begin() and end() member functions.
Avoids the need to rebuild multiple source files if the filesystem code
headers change.
This also gets rid of a few instances of indirect inclusions being
relied upon
We have an overload of WriteBuffer that accepts containers that satisfy
the ContiguousContainer concept, which std::array does, so we only need
to pass in the array itself.
ProfileInfo is quite a large struct in terms of data, and we don't need
to perform a copy in these instances, so we can just pass constant
references instead.
We can use the constructor initializer list and just compare the
contained u128's together instead of comparing each element
individually. Ditto for comparing against an invalid UUID.
Moving a const reference isn't possible, so this just results in a copy
(and given ProfileInfo is composed of trivial types and aggregates, a
move wouldn't really do anything).
Allows querying the inverse of IsDomain() to make things more readable.
This will likely also be usable in the event of implementing
ConvertDomainToSession().
Using LOG_TRACE here isn't a good idea because LOG_TRACE is only enabled
when yuzu is compiled in debug mode. Debug mode is also quite slow, and
so we're potentially throwing away logging messages that can provide
value when trying to boot games.
The thread field serves to indicate which thread a log is related to and
provides the length of the thread's name, so we can print that out,
ditto for modules.
Now we can know what threads are potentially spawning off logging
messages (for example Lydie & Suelle bounces between MainThread and
LoadingThread when initializing the game).
struct should be used when the data type is very simple or otherwise has
no invariants associated with it. Given these are used to form a
hierarchy, class should be used instead.
As we're not handling any anything about the revision data for GetAudioDeviceServiceWithRevisionInfo, it's currently marked as stubbed. However for games this shouldn't affect the result. Proper revision info would be more for homebrew.
GetAudioRendererSampleRate is set as a "STUB" as a game could check if the sample rate it sent and the sample rate it wants don't match. Just a thought of something which could happen so keeping it as stub for the mean time
Instead, we make a struct for renderer settings and allow the renderer
to update all of these settings, getting rid of the need for
global-scoped variables.
This also uncovered a few indirect inclusions for certain headers, which
this commit also fixes.
This is simply copied by value, so there's no need to make it a
modifiable reference.
While we're at it, make the names of the parameters match its
definition.
The current way were doing it would require copying a 768 character
buffer (part of the Entry struct) to the new element in the vector.
Given it's a plain array, std::move won't eliminate that.
Instead, we can emplace an instance directly into the destination buffer
and then fill it out, avoiding the need to perform any unnecessary
copies.
Given this is done in a loop, we can request the destination to allocate
all of the necessary memory ahead of time, avoiding the need to
potentially keep reallocating over and over on every few insertions into
the vector.
We don't need to use a std::string here, given all that's done is
comparing the character sequence against another. This allows passing
regular const char* without needing to heap allocate.
All calling code assumes that the rasterizer will be in a valid state,
which is a totally fine assumption. The only way the rasterizer wouldn't
be is if initialization is done incorrectly or fails, which is checked
against in System::Init().
We move the initialization of the renderer to the core class, while
keeping the creation of it and any other specifics in video_core. This
way we can ensure that the renderer is initialized and doesn't give
unfettered access to the renderer. This also makes dependencies on types
more explicit.
For example, the GPU class doesn't need to depend on the
existence of a renderer, it only needs to care about whether or not it
has a rasterizer, but since it was accessing the global variable, it was
also making the renderer a part of its dependency chain. By adjusting
the interface, we can get rid of this dependency.
General moving to keep kernel object types separate from the direct
kernel code. Also essentially a preliminary cleanup before eliminating
global kernel state in the kernel code.