mirror of
https://git.suyu.dev/suyu/suyu.git
synced 2024-11-30 07:16:24 -05:00
ebb64d5bf4
Resolves shadowing warnings that aren't in a particularly large subsection of core. Brings us closer to turning -Wshadow into an error. All that remains now is for cases in the kernel (left untouched for now since a big change by bunnei is pending), and a few left over in the service code (will be tackled next).
254 lines
7.3 KiB
C++
254 lines
7.3 KiB
C++
// Copyright 2020 yuzu Emulator Project
|
|
// Licensed under GPLv2 or any later version
|
|
// Refer to the license.txt file included.
|
|
|
|
#include <algorithm>
|
|
#include <mutex>
|
|
#include <string>
|
|
#include <tuple>
|
|
|
|
#include "common/microprofile.h"
|
|
#include "core/core_timing.h"
|
|
#include "core/core_timing_util.h"
|
|
#include "core/hardware_properties.h"
|
|
|
|
namespace Core::Timing {
|
|
|
|
constexpr s64 MAX_SLICE_LENGTH = 4000;
|
|
|
|
std::shared_ptr<EventType> CreateEvent(std::string name, TimedCallback&& callback) {
|
|
return std::make_shared<EventType>(std::move(callback), std::move(name));
|
|
}
|
|
|
|
struct CoreTiming::Event {
|
|
u64 time;
|
|
u64 fifo_order;
|
|
std::uintptr_t user_data;
|
|
std::weak_ptr<EventType> type;
|
|
|
|
// Sort by time, unless the times are the same, in which case sort by
|
|
// the order added to the queue
|
|
friend bool operator>(const Event& left, const Event& right) {
|
|
return std::tie(left.time, left.fifo_order) > std::tie(right.time, right.fifo_order);
|
|
}
|
|
|
|
friend bool operator<(const Event& left, const Event& right) {
|
|
return std::tie(left.time, left.fifo_order) < std::tie(right.time, right.fifo_order);
|
|
}
|
|
};
|
|
|
|
CoreTiming::CoreTiming()
|
|
: clock{Common::CreateBestMatchingClock(Hardware::BASE_CLOCK_RATE, Hardware::CNTFREQ)} {}
|
|
|
|
CoreTiming::~CoreTiming() = default;
|
|
|
|
void CoreTiming::ThreadEntry(CoreTiming& instance) {
|
|
constexpr char name[] = "yuzu:HostTiming";
|
|
MicroProfileOnThreadCreate(name);
|
|
Common::SetCurrentThreadName(name);
|
|
Common::SetCurrentThreadPriority(Common::ThreadPriority::VeryHigh);
|
|
instance.on_thread_init();
|
|
instance.ThreadLoop();
|
|
MicroProfileOnThreadExit();
|
|
}
|
|
|
|
void CoreTiming::Initialize(std::function<void()>&& on_thread_init_) {
|
|
on_thread_init = std::move(on_thread_init_);
|
|
event_fifo_id = 0;
|
|
shutting_down = false;
|
|
ticks = 0;
|
|
const auto empty_timed_callback = [](std::uintptr_t, std::chrono::nanoseconds) {};
|
|
ev_lost = CreateEvent("_lost_event", empty_timed_callback);
|
|
if (is_multicore) {
|
|
timer_thread = std::make_unique<std::thread>(ThreadEntry, std::ref(*this));
|
|
}
|
|
}
|
|
|
|
void CoreTiming::Shutdown() {
|
|
paused = true;
|
|
shutting_down = true;
|
|
pause_event.Set();
|
|
event.Set();
|
|
if (timer_thread) {
|
|
timer_thread->join();
|
|
}
|
|
ClearPendingEvents();
|
|
timer_thread.reset();
|
|
has_started = false;
|
|
}
|
|
|
|
void CoreTiming::Pause(bool is_paused) {
|
|
paused = is_paused;
|
|
pause_event.Set();
|
|
}
|
|
|
|
void CoreTiming::SyncPause(bool is_paused) {
|
|
if (is_paused == paused && paused_set == paused) {
|
|
return;
|
|
}
|
|
Pause(is_paused);
|
|
if (timer_thread) {
|
|
if (!is_paused) {
|
|
pause_event.Set();
|
|
}
|
|
event.Set();
|
|
while (paused_set != is_paused)
|
|
;
|
|
}
|
|
}
|
|
|
|
bool CoreTiming::IsRunning() const {
|
|
return !paused_set;
|
|
}
|
|
|
|
bool CoreTiming::HasPendingEvents() const {
|
|
return !(wait_set && event_queue.empty());
|
|
}
|
|
|
|
void CoreTiming::ScheduleEvent(std::chrono::nanoseconds ns_into_future,
|
|
const std::shared_ptr<EventType>& event_type,
|
|
std::uintptr_t user_data) {
|
|
{
|
|
std::scoped_lock scope{basic_lock};
|
|
const u64 timeout = static_cast<u64>((GetGlobalTimeNs() + ns_into_future).count());
|
|
|
|
event_queue.emplace_back(Event{timeout, event_fifo_id++, user_data, event_type});
|
|
|
|
std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>());
|
|
}
|
|
event.Set();
|
|
}
|
|
|
|
void CoreTiming::UnscheduleEvent(const std::shared_ptr<EventType>& event_type,
|
|
std::uintptr_t user_data) {
|
|
std::scoped_lock scope{basic_lock};
|
|
const auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) {
|
|
return e.type.lock().get() == event_type.get() && e.user_data == user_data;
|
|
});
|
|
|
|
// Removing random items breaks the invariant so we have to re-establish it.
|
|
if (itr != event_queue.end()) {
|
|
event_queue.erase(itr, event_queue.end());
|
|
std::make_heap(event_queue.begin(), event_queue.end(), std::greater<>());
|
|
}
|
|
}
|
|
|
|
void CoreTiming::AddTicks(u64 ticks_to_add) {
|
|
ticks += ticks_to_add;
|
|
downcount -= static_cast<s64>(ticks);
|
|
}
|
|
|
|
void CoreTiming::Idle() {
|
|
if (!event_queue.empty()) {
|
|
const u64 next_event_time = event_queue.front().time;
|
|
const u64 next_ticks = nsToCycles(std::chrono::nanoseconds(next_event_time)) + 10U;
|
|
if (next_ticks > ticks) {
|
|
ticks = next_ticks;
|
|
}
|
|
return;
|
|
}
|
|
ticks += 1000U;
|
|
}
|
|
|
|
void CoreTiming::ResetTicks() {
|
|
downcount = MAX_SLICE_LENGTH;
|
|
}
|
|
|
|
u64 CoreTiming::GetCPUTicks() const {
|
|
if (is_multicore) {
|
|
return clock->GetCPUCycles();
|
|
}
|
|
return ticks;
|
|
}
|
|
|
|
u64 CoreTiming::GetClockTicks() const {
|
|
if (is_multicore) {
|
|
return clock->GetClockCycles();
|
|
}
|
|
return CpuCyclesToClockCycles(ticks);
|
|
}
|
|
|
|
void CoreTiming::ClearPendingEvents() {
|
|
event_queue.clear();
|
|
}
|
|
|
|
void CoreTiming::RemoveEvent(const std::shared_ptr<EventType>& event_type) {
|
|
std::scoped_lock lock{basic_lock};
|
|
|
|
const auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) {
|
|
return e.type.lock().get() == event_type.get();
|
|
});
|
|
|
|
// Removing random items breaks the invariant so we have to re-establish it.
|
|
if (itr != event_queue.end()) {
|
|
event_queue.erase(itr, event_queue.end());
|
|
std::make_heap(event_queue.begin(), event_queue.end(), std::greater<>());
|
|
}
|
|
}
|
|
|
|
std::optional<s64> CoreTiming::Advance() {
|
|
std::scoped_lock lock{advance_lock, basic_lock};
|
|
global_timer = GetGlobalTimeNs().count();
|
|
|
|
while (!event_queue.empty() && event_queue.front().time <= global_timer) {
|
|
Event evt = std::move(event_queue.front());
|
|
std::pop_heap(event_queue.begin(), event_queue.end(), std::greater<>());
|
|
event_queue.pop_back();
|
|
basic_lock.unlock();
|
|
|
|
if (const auto event_type{evt.type.lock()}) {
|
|
event_type->callback(
|
|
evt.user_data, std::chrono::nanoseconds{static_cast<s64>(global_timer - evt.time)});
|
|
}
|
|
|
|
basic_lock.lock();
|
|
global_timer = GetGlobalTimeNs().count();
|
|
}
|
|
|
|
if (!event_queue.empty()) {
|
|
const s64 next_time = event_queue.front().time - global_timer;
|
|
return next_time;
|
|
} else {
|
|
return std::nullopt;
|
|
}
|
|
}
|
|
|
|
void CoreTiming::ThreadLoop() {
|
|
has_started = true;
|
|
while (!shutting_down) {
|
|
while (!paused) {
|
|
paused_set = false;
|
|
const auto next_time = Advance();
|
|
if (next_time) {
|
|
if (*next_time > 0) {
|
|
std::chrono::nanoseconds next_time_ns = std::chrono::nanoseconds(*next_time);
|
|
event.WaitFor(next_time_ns);
|
|
}
|
|
} else {
|
|
wait_set = true;
|
|
event.Wait();
|
|
}
|
|
wait_set = false;
|
|
}
|
|
paused_set = true;
|
|
clock->Pause(true);
|
|
pause_event.Wait();
|
|
clock->Pause(false);
|
|
}
|
|
}
|
|
|
|
std::chrono::nanoseconds CoreTiming::GetGlobalTimeNs() const {
|
|
if (is_multicore) {
|
|
return clock->GetTimeNS();
|
|
}
|
|
return CyclesToNs(ticks);
|
|
}
|
|
|
|
std::chrono::microseconds CoreTiming::GetGlobalTimeUs() const {
|
|
if (is_multicore) {
|
|
return clock->GetTimeUS();
|
|
}
|
|
return CyclesToUs(ticks);
|
|
}
|
|
|
|
} // namespace Core::Timing
|