suyu/src/core/hle/kernel/k_thread.h

860 lines
24 KiB
C++

// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <array>
#include <atomic>
#include <condition_variable>
#include <mutex>
#include <span>
#include <string>
#include <utility>
#include <vector>
#include <boost/intrusive/list.hpp>
#include "common/common_types.h"
#include "common/intrusive_red_black_tree.h"
#include "common/spin_lock.h"
#include "core/arm/arm_interface.h"
#include "core/hle/kernel/k_affinity_mask.h"
#include "core/hle/kernel/k_light_lock.h"
#include "core/hle/kernel/k_spin_lock.h"
#include "core/hle/kernel/k_synchronization_object.h"
#include "core/hle/kernel/k_worker_task.h"
#include "core/hle/kernel/slab_helpers.h"
#include "core/hle/kernel/svc_common.h"
#include "core/hle/kernel/svc_types.h"
#include "core/hle/result.h"
namespace Common {
class Fiber;
}
namespace Core {
class ARM_Interface;
class System;
} // namespace Core
namespace Kernel {
class GlobalSchedulerContext;
class KernelCore;
class KProcess;
class KScheduler;
class KThreadQueue;
using KThreadFunction = VAddr;
enum class ThreadType : u32 {
Main = 0,
Kernel = 1,
HighPriority = 2,
User = 3,
Dummy = 100, // Special thread type for emulation purposes only
};
DECLARE_ENUM_FLAG_OPERATORS(ThreadType);
enum class SuspendType : u32 {
Process = 0,
Thread = 1,
Debug = 2,
Backtrace = 3,
Init = 4,
Count,
};
enum class ThreadState : u16 {
Initialized = 0,
Waiting = 1,
Runnable = 2,
Terminated = 3,
SuspendShift = 4,
Mask = (1 << SuspendShift) - 1,
ProcessSuspended = (1 << (0 + SuspendShift)),
ThreadSuspended = (1 << (1 + SuspendShift)),
DebugSuspended = (1 << (2 + SuspendShift)),
BacktraceSuspended = (1 << (3 + SuspendShift)),
InitSuspended = (1 << (4 + SuspendShift)),
SuspendFlagMask = ((1 << 5) - 1) << SuspendShift,
};
DECLARE_ENUM_FLAG_OPERATORS(ThreadState);
enum class DpcFlag : u32 {
Terminating = (1 << 0),
Terminated = (1 << 1),
};
enum class ThreadWaitReasonForDebugging : u32 {
None, ///< Thread is not waiting
Sleep, ///< Thread is waiting due to a SleepThread SVC
IPC, ///< Thread is waiting for the reply from an IPC request
Synchronization, ///< Thread is waiting due to a WaitSynchronization SVC
ConditionVar, ///< Thread is waiting due to a WaitProcessWideKey SVC
Arbitration, ///< Thread is waiting due to a SignalToAddress/WaitForAddress SVC
Suspended, ///< Thread is waiting due to process suspension
};
enum class StepState : u32 {
NotStepping, ///< Thread is not currently stepping
StepPending, ///< Thread will step when next scheduled
StepPerformed, ///< Thread has stepped, waiting to be scheduled again
};
void SetCurrentThread(KernelCore& kernel, KThread* thread);
[[nodiscard]] KThread* GetCurrentThreadPointer(KernelCore& kernel);
[[nodiscard]] KThread& GetCurrentThread(KernelCore& kernel);
[[nodiscard]] s32 GetCurrentCoreId(KernelCore& kernel);
class KThread final : public KAutoObjectWithSlabHeapAndContainer<KThread, KWorkerTask>,
public boost::intrusive::list_base_hook<> {
KERNEL_AUTOOBJECT_TRAITS(KThread, KSynchronizationObject);
private:
friend class KScheduler;
friend class KProcess;
public:
static constexpr s32 DefaultThreadPriority = 44;
static constexpr s32 IdleThreadPriority = Svc::LowestThreadPriority + 1;
static constexpr s32 DummyThreadPriority = Svc::LowestThreadPriority + 2;
explicit KThread(KernelCore& kernel_);
~KThread() override;
public:
using ThreadContext32 = Core::ARM_Interface::ThreadContext32;
using ThreadContext64 = Core::ARM_Interface::ThreadContext64;
using WaiterList = boost::intrusive::list<KThread>;
void SetName(std::string new_name) {
name = std::move(new_name);
}
/**
* Gets the thread's current priority
* @return The current thread's priority
*/
[[nodiscard]] s32 GetPriority() const {
return priority;
}
/**
* Sets the thread's current priority.
* @param priority The new priority.
*/
void SetPriority(s32 value) {
priority = value;
}
/**
* Gets the thread's nominal priority.
* @return The current thread's nominal priority.
*/
[[nodiscard]] s32 GetBasePriority() const {
return base_priority;
}
/**
* Gets the thread's thread ID
* @return The thread's ID
*/
[[nodiscard]] u64 GetThreadID() const {
return thread_id;
}
void ContinueIfHasKernelWaiters() {
if (GetNumKernelWaiters() > 0) {
Continue();
}
}
void SetBasePriority(s32 value);
[[nodiscard]] Result Run();
void Exit();
[[nodiscard]] u32 GetSuspendFlags() const {
return suspend_allowed_flags & suspend_request_flags;
}
[[nodiscard]] bool IsSuspended() const {
return GetSuspendFlags() != 0;
}
[[nodiscard]] bool IsSuspendRequested(SuspendType type) const {
return (suspend_request_flags &
(1u << (static_cast<u32>(ThreadState::SuspendShift) + static_cast<u32>(type)))) !=
0;
}
[[nodiscard]] bool IsSuspendRequested() const {
return suspend_request_flags != 0;
}
void RequestSuspend(SuspendType type);
void Resume(SuspendType type);
void TrySuspend();
void UpdateState();
void Continue();
void WaitUntilSuspended();
constexpr void SetSyncedIndex(s32 index) {
synced_index = index;
}
[[nodiscard]] constexpr s32 GetSyncedIndex() const {
return synced_index;
}
constexpr void SetWaitResult(Result wait_res) {
wait_result = wait_res;
}
[[nodiscard]] constexpr Result GetWaitResult() const {
return wait_result;
}
/*
* Returns the Thread Local Storage address of the current thread
* @returns VAddr of the thread's TLS
*/
[[nodiscard]] VAddr GetTLSAddress() const {
return tls_address;
}
/*
* Returns the value of the TPIDR_EL0 Read/Write system register for this thread.
* @returns The value of the TPIDR_EL0 register.
*/
[[nodiscard]] u64 GetTPIDR_EL0() const {
return thread_context_64.tpidr;
}
/// Sets the value of the TPIDR_EL0 Read/Write system register for this thread.
void SetTPIDR_EL0(u64 value) {
thread_context_64.tpidr = value;
thread_context_32.tpidr = static_cast<u32>(value);
}
[[nodiscard]] ThreadContext32& GetContext32() {
return thread_context_32;
}
[[nodiscard]] const ThreadContext32& GetContext32() const {
return thread_context_32;
}
[[nodiscard]] ThreadContext64& GetContext64() {
return thread_context_64;
}
[[nodiscard]] const ThreadContext64& GetContext64() const {
return thread_context_64;
}
[[nodiscard]] std::shared_ptr<Common::Fiber>& GetHostContext();
[[nodiscard]] ThreadState GetState() const {
return thread_state.load(std::memory_order_relaxed) & ThreadState::Mask;
}
[[nodiscard]] ThreadState GetRawState() const {
return thread_state.load(std::memory_order_relaxed);
}
void SetState(ThreadState state);
[[nodiscard]] StepState GetStepState() const {
return step_state;
}
void SetStepState(StepState state) {
step_state = state;
}
[[nodiscard]] s64 GetLastScheduledTick() const {
return last_scheduled_tick;
}
void SetLastScheduledTick(s64 tick) {
last_scheduled_tick = tick;
}
void AddCpuTime([[maybe_unused]] s32 core_id_, s64 amount) {
cpu_time += amount;
// TODO(bunnei): Debug kernels track per-core tick counts. Should we?
}
[[nodiscard]] s64 GetCpuTime() const {
return cpu_time;
}
[[nodiscard]] s32 GetActiveCore() const {
return core_id;
}
void SetActiveCore(s32 core) {
core_id = core;
}
[[nodiscard]] s32 GetCurrentCore() const {
return current_core_id;
}
void SetCurrentCore(s32 core) {
current_core_id = core;
}
[[nodiscard]] KProcess* GetOwnerProcess() {
return parent;
}
[[nodiscard]] const KProcess* GetOwnerProcess() const {
return parent;
}
[[nodiscard]] bool IsUserThread() const {
return parent != nullptr;
}
u16 GetUserDisableCount() const;
void SetInterruptFlag();
void ClearInterruptFlag();
[[nodiscard]] KThread* GetLockOwner() const {
return lock_owner;
}
void SetLockOwner(KThread* owner) {
lock_owner = owner;
}
[[nodiscard]] const KAffinityMask& GetAffinityMask() const {
return physical_affinity_mask;
}
[[nodiscard]] Result GetCoreMask(s32* out_ideal_core, u64* out_affinity_mask);
[[nodiscard]] Result GetPhysicalCoreMask(s32* out_ideal_core, u64* out_affinity_mask);
[[nodiscard]] Result SetCoreMask(s32 cpu_core_id, u64 v_affinity_mask);
[[nodiscard]] Result SetActivity(Svc::ThreadActivity activity);
[[nodiscard]] Result Sleep(s64 timeout);
[[nodiscard]] s64 GetYieldScheduleCount() const {
return schedule_count;
}
void SetYieldScheduleCount(s64 count) {
schedule_count = count;
}
void WaitCancel();
[[nodiscard]] bool IsWaitCancelled() const {
return wait_cancelled;
}
void ClearWaitCancelled() {
wait_cancelled = false;
}
[[nodiscard]] bool IsCancellable() const {
return cancellable;
}
void SetCancellable() {
cancellable = true;
}
void ClearCancellable() {
cancellable = false;
}
[[nodiscard]] bool IsTerminationRequested() const {
return termination_requested || GetRawState() == ThreadState::Terminated;
}
[[nodiscard]] u64 GetId() const override {
return this->GetThreadID();
}
[[nodiscard]] bool IsInitialized() const override {
return initialized;
}
[[nodiscard]] uintptr_t GetPostDestroyArgument() const override {
return reinterpret_cast<uintptr_t>(parent) | (resource_limit_release_hint ? 1 : 0);
}
void Finalize() override;
[[nodiscard]] bool IsSignaled() const override;
void OnTimer();
void DoWorkerTaskImpl();
static void PostDestroy(uintptr_t arg);
[[nodiscard]] static Result InitializeDummyThread(KThread* thread);
[[nodiscard]] static Result InitializeIdleThread(Core::System& system, KThread* thread,
s32 virt_core);
[[nodiscard]] static Result InitializeHighPriorityThread(Core::System& system, KThread* thread,
KThreadFunction func, uintptr_t arg,
s32 virt_core);
[[nodiscard]] static Result InitializeUserThread(Core::System& system, KThread* thread,
KThreadFunction func, uintptr_t arg,
VAddr user_stack_top, s32 prio, s32 virt_core,
KProcess* owner);
public:
struct StackParameters {
u8 svc_permission[0x10];
std::atomic<u8> dpc_flags;
u8 current_svc_id;
bool is_calling_svc;
bool is_in_exception_handler;
bool is_pinned;
s32 disable_count;
KThread* cur_thread;
};
[[nodiscard]] StackParameters& GetStackParameters() {
return stack_parameters;
}
[[nodiscard]] const StackParameters& GetStackParameters() const {
return stack_parameters;
}
class QueueEntry {
public:
constexpr QueueEntry() = default;
constexpr void Initialize() {
prev = nullptr;
next = nullptr;
}
constexpr KThread* GetPrev() const {
return prev;
}
constexpr KThread* GetNext() const {
return next;
}
constexpr void SetPrev(KThread* thread) {
prev = thread;
}
constexpr void SetNext(KThread* thread) {
next = thread;
}
private:
KThread* prev{};
KThread* next{};
};
[[nodiscard]] QueueEntry& GetPriorityQueueEntry(s32 core) {
return per_core_priority_queue_entry[core];
}
[[nodiscard]] const QueueEntry& GetPriorityQueueEntry(s32 core) const {
return per_core_priority_queue_entry[core];
}
[[nodiscard]] bool IsKernelThread() const {
return GetActiveCore() == 3;
}
[[nodiscard]] bool IsDispatchTrackingDisabled() const {
return is_single_core || IsKernelThread();
}
[[nodiscard]] s32 GetDisableDispatchCount() const {
if (IsDispatchTrackingDisabled()) {
// TODO(bunnei): Until kernel threads are emulated, we cannot enable/disable dispatch.
return 1;
}
return this->GetStackParameters().disable_count;
}
void DisableDispatch() {
if (IsDispatchTrackingDisabled()) {
// TODO(bunnei): Until kernel threads are emulated, we cannot enable/disable dispatch.
return;
}
ASSERT(GetCurrentThread(kernel).GetDisableDispatchCount() >= 0);
this->GetStackParameters().disable_count++;
}
void EnableDispatch() {
if (IsDispatchTrackingDisabled()) {
// TODO(bunnei): Until kernel threads are emulated, we cannot enable/disable dispatch.
return;
}
ASSERT(GetCurrentThread(kernel).GetDisableDispatchCount() > 0);
this->GetStackParameters().disable_count--;
}
void Pin(s32 current_core);
void Unpin();
void SetInExceptionHandler() {
this->GetStackParameters().is_in_exception_handler = true;
}
void ClearInExceptionHandler() {
this->GetStackParameters().is_in_exception_handler = false;
}
[[nodiscard]] bool IsInExceptionHandler() const {
return this->GetStackParameters().is_in_exception_handler;
}
void SetIsCallingSvc() {
this->GetStackParameters().is_calling_svc = true;
}
void ClearIsCallingSvc() {
this->GetStackParameters().is_calling_svc = false;
}
[[nodiscard]] bool IsCallingSvc() const {
return this->GetStackParameters().is_calling_svc;
}
[[nodiscard]] u8 GetSvcId() const {
return this->GetStackParameters().current_svc_id;
}
void RegisterDpc(DpcFlag flag) {
this->GetStackParameters().dpc_flags |= static_cast<u8>(flag);
}
void ClearDpc(DpcFlag flag) {
this->GetStackParameters().dpc_flags &= ~static_cast<u8>(flag);
}
[[nodiscard]] u8 GetDpc() const {
return this->GetStackParameters().dpc_flags;
}
[[nodiscard]] bool HasDpc() const {
return this->GetDpc() != 0;
}
void SetWaitReasonForDebugging(ThreadWaitReasonForDebugging reason) {
wait_reason_for_debugging = reason;
}
[[nodiscard]] ThreadWaitReasonForDebugging GetWaitReasonForDebugging() const {
return wait_reason_for_debugging;
}
[[nodiscard]] ThreadType GetThreadType() const {
return thread_type;
}
[[nodiscard]] bool IsDummyThread() const {
return GetThreadType() == ThreadType::Dummy;
}
void SetWaitObjectsForDebugging(const std::span<KSynchronizationObject*>& objects) {
wait_objects_for_debugging.clear();
wait_objects_for_debugging.reserve(objects.size());
for (const auto& object : objects) {
wait_objects_for_debugging.emplace_back(object);
}
}
[[nodiscard]] const std::vector<KSynchronizationObject*>& GetWaitObjectsForDebugging() const {
return wait_objects_for_debugging;
}
void SetMutexWaitAddressForDebugging(VAddr address) {
mutex_wait_address_for_debugging = address;
}
[[nodiscard]] VAddr GetMutexWaitAddressForDebugging() const {
return mutex_wait_address_for_debugging;
}
[[nodiscard]] s32 GetIdealCoreForDebugging() const {
return virtual_ideal_core_id;
}
void AddWaiter(KThread* thread);
void RemoveWaiter(KThread* thread);
[[nodiscard]] Result GetThreadContext3(std::vector<u8>& out);
[[nodiscard]] KThread* RemoveWaiterByKey(s32* out_num_waiters, VAddr key);
[[nodiscard]] VAddr GetAddressKey() const {
return address_key;
}
[[nodiscard]] u32 GetAddressKeyValue() const {
return address_key_value;
}
void SetAddressKey(VAddr key) {
address_key = key;
}
void SetAddressKey(VAddr key, u32 val) {
address_key = key;
address_key_value = val;
}
void ClearWaitQueue() {
wait_queue = nullptr;
}
void BeginWait(KThreadQueue* queue);
void NotifyAvailable(KSynchronizationObject* signaled_object, Result wait_result_);
void EndWait(Result wait_result_);
void CancelWait(Result wait_result_, bool cancel_timer_task);
[[nodiscard]] bool HasWaiters() const {
return !waiter_list.empty();
}
[[nodiscard]] s32 GetNumKernelWaiters() const {
return num_kernel_waiters;
}
[[nodiscard]] u64 GetConditionVariableKey() const {
return condvar_key;
}
[[nodiscard]] u64 GetAddressArbiterKey() const {
return condvar_key;
}
// Dummy threads (used for HLE host threads) cannot wait based on the guest scheduler, and
// therefore will not block on guest kernel synchronization primitives. These methods handle
// blocking as needed.
void IfDummyThreadTryWait();
void IfDummyThreadEndWait();
[[nodiscard]] uintptr_t GetArgument() const {
return argument;
}
[[nodiscard]] VAddr GetUserStackTop() const {
return stack_top;
}
private:
static constexpr size_t PriorityInheritanceCountMax = 10;
union SyncObjectBuffer {
std::array<KSynchronizationObject*, Svc::ArgumentHandleCountMax> sync_objects{};
std::array<Handle,
Svc::ArgumentHandleCountMax*(sizeof(KSynchronizationObject*) / sizeof(Handle))>
handles;
constexpr SyncObjectBuffer() {}
};
static_assert(sizeof(SyncObjectBuffer::sync_objects) == sizeof(SyncObjectBuffer::handles));
struct ConditionVariableComparator {
struct RedBlackKeyType {
u64 cv_key{};
s32 priority{};
[[nodiscard]] constexpr u64 GetConditionVariableKey() const {
return cv_key;
}
[[nodiscard]] constexpr s32 GetPriority() const {
return priority;
}
};
template <typename T>
requires(
std::same_as<T, KThread> ||
std::same_as<T, RedBlackKeyType>) static constexpr int Compare(const T& lhs,
const KThread& rhs) {
const u64 l_key = lhs.GetConditionVariableKey();
const u64 r_key = rhs.GetConditionVariableKey();
if (l_key < r_key) {
// Sort first by key
return -1;
} else if (l_key == r_key && lhs.GetPriority() < rhs.GetPriority()) {
// And then by priority.
return -1;
} else {
return 1;
}
}
};
void AddWaiterImpl(KThread* thread);
void RemoveWaiterImpl(KThread* thread);
void StartTermination();
void FinishTermination();
[[nodiscard]] Result Initialize(KThreadFunction func, uintptr_t arg, VAddr user_stack_top,
s32 prio, s32 virt_core, KProcess* owner, ThreadType type);
[[nodiscard]] static Result InitializeThread(KThread* thread, KThreadFunction func,
uintptr_t arg, VAddr user_stack_top, s32 prio,
s32 core, KProcess* owner, ThreadType type,
std::function<void(void*)>&& init_func,
void* init_func_parameter);
static void RestorePriority(KernelCore& kernel_ctx, KThread* thread);
// For core KThread implementation
ThreadContext32 thread_context_32{};
ThreadContext64 thread_context_64{};
Common::IntrusiveRedBlackTreeNode condvar_arbiter_tree_node{};
s32 priority{};
using ConditionVariableThreadTreeTraits =
Common::IntrusiveRedBlackTreeMemberTraitsDeferredAssert<
&KThread::condvar_arbiter_tree_node>;
using ConditionVariableThreadTree =
ConditionVariableThreadTreeTraits::TreeType<ConditionVariableComparator>;
ConditionVariableThreadTree* condvar_tree{};
u64 condvar_key{};
u64 virtual_affinity_mask{};
KAffinityMask physical_affinity_mask{};
u64 thread_id{};
std::atomic<s64> cpu_time{};
VAddr address_key{};
KProcess* parent{};
VAddr kernel_stack_top{};
u32* light_ipc_data{};
VAddr tls_address{};
KLightLock activity_pause_lock;
s64 schedule_count{};
s64 last_scheduled_tick{};
std::array<QueueEntry, Core::Hardware::NUM_CPU_CORES> per_core_priority_queue_entry{};
KThreadQueue* wait_queue{};
WaiterList waiter_list{};
WaiterList pinned_waiter_list{};
KThread* lock_owner{};
u32 address_key_value{};
u32 suspend_request_flags{};
u32 suspend_allowed_flags{};
s32 synced_index{};
Result wait_result{ResultSuccess};
s32 base_priority{};
s32 physical_ideal_core_id{};
s32 virtual_ideal_core_id{};
s32 num_kernel_waiters{};
s32 current_core_id{};
s32 core_id{};
KAffinityMask original_physical_affinity_mask{};
s32 original_physical_ideal_core_id{};
s32 num_core_migration_disables{};
std::atomic<ThreadState> thread_state{};
std::atomic<bool> termination_requested{};
bool wait_cancelled{};
bool cancellable{};
bool signaled{};
bool initialized{};
bool debug_attached{};
s8 priority_inheritance_count{};
bool resource_limit_release_hint{};
StackParameters stack_parameters{};
Common::SpinLock context_guard{};
// For emulation
std::shared_ptr<Common::Fiber> host_context{};
bool is_single_core{};
ThreadType thread_type{};
StepState step_state{};
std::mutex dummy_wait_lock;
std::condition_variable dummy_wait_cv;
// For debugging
std::vector<KSynchronizationObject*> wait_objects_for_debugging;
VAddr mutex_wait_address_for_debugging{};
ThreadWaitReasonForDebugging wait_reason_for_debugging{};
uintptr_t argument;
VAddr stack_top;
public:
using ConditionVariableThreadTreeType = ConditionVariableThreadTree;
void SetConditionVariable(ConditionVariableThreadTree* tree, VAddr address, u64 cv_key,
u32 value) {
condvar_tree = tree;
condvar_key = cv_key;
address_key = address;
address_key_value = value;
}
void ClearConditionVariable() {
condvar_tree = nullptr;
}
[[nodiscard]] bool IsWaitingForConditionVariable() const {
return condvar_tree != nullptr;
}
void SetAddressArbiter(ConditionVariableThreadTree* tree, u64 address) {
condvar_tree = tree;
condvar_key = address;
}
void ClearAddressArbiter() {
condvar_tree = nullptr;
}
[[nodiscard]] bool IsWaitingForAddressArbiter() const {
return condvar_tree != nullptr;
}
[[nodiscard]] ConditionVariableThreadTree* GetConditionVariableTree() const {
return condvar_tree;
}
};
class KScopedDisableDispatch {
public:
[[nodiscard]] explicit KScopedDisableDispatch(KernelCore& kernel_) : kernel{kernel_} {
// If we are shutting down the kernel, none of this is relevant anymore.
if (kernel.IsShuttingDown()) {
return;
}
GetCurrentThread(kernel).DisableDispatch();
}
~KScopedDisableDispatch();
private:
KernelCore& kernel;
};
} // namespace Kernel