mirror of
https://git.suyu.dev/suyu/suyu.git
synced 2024-11-30 15:26:54 -05:00
702 lines
22 KiB
C++
702 lines
22 KiB
C++
// SPDX-FileCopyrightText: 2015 Citra Emulator Project
|
|
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
|
|
#include <algorithm>
|
|
#include <bitset>
|
|
#include <ctime>
|
|
#include <memory>
|
|
#include <random>
|
|
#include "common/alignment.h"
|
|
#include "common/assert.h"
|
|
#include "common/logging/log.h"
|
|
#include "common/scope_exit.h"
|
|
#include "common/settings.h"
|
|
#include "core/core.h"
|
|
#include "core/file_sys/program_metadata.h"
|
|
#include "core/hle/kernel/code_set.h"
|
|
#include "core/hle/kernel/k_memory_block_manager.h"
|
|
#include "core/hle/kernel/k_page_table.h"
|
|
#include "core/hle/kernel/k_process.h"
|
|
#include "core/hle/kernel/k_resource_limit.h"
|
|
#include "core/hle/kernel/k_scheduler.h"
|
|
#include "core/hle/kernel/k_scoped_resource_reservation.h"
|
|
#include "core/hle/kernel/k_shared_memory.h"
|
|
#include "core/hle/kernel/k_shared_memory_info.h"
|
|
#include "core/hle/kernel/k_thread.h"
|
|
#include "core/hle/kernel/kernel.h"
|
|
#include "core/hle/kernel/svc_results.h"
|
|
#include "core/memory.h"
|
|
|
|
namespace Kernel {
|
|
namespace {
|
|
/**
|
|
* Sets up the primary application thread
|
|
*
|
|
* @param system The system instance to create the main thread under.
|
|
* @param owner_process The parent process for the main thread
|
|
* @param priority The priority to give the main thread
|
|
*/
|
|
void SetupMainThread(Core::System& system, KProcess& owner_process, u32 priority, VAddr stack_top) {
|
|
const VAddr entry_point = owner_process.PageTable().GetCodeRegionStart();
|
|
ASSERT(owner_process.GetResourceLimit()->Reserve(LimitableResource::ThreadCountMax, 1));
|
|
|
|
KThread* thread = KThread::Create(system.Kernel());
|
|
SCOPE_EXIT({ thread->Close(); });
|
|
|
|
ASSERT(KThread::InitializeUserThread(system, thread, entry_point, 0, stack_top, priority,
|
|
owner_process.GetIdealCoreId(), &owner_process)
|
|
.IsSuccess());
|
|
|
|
// Register 1 must be a handle to the main thread
|
|
Handle thread_handle{};
|
|
owner_process.GetHandleTable().Add(&thread_handle, thread);
|
|
|
|
thread->SetName("main");
|
|
thread->GetContext32().cpu_registers[0] = 0;
|
|
thread->GetContext64().cpu_registers[0] = 0;
|
|
thread->GetContext32().cpu_registers[1] = thread_handle;
|
|
thread->GetContext64().cpu_registers[1] = thread_handle;
|
|
|
|
if (system.DebuggerEnabled()) {
|
|
thread->RequestSuspend(SuspendType::Debug);
|
|
}
|
|
|
|
// Run our thread.
|
|
void(thread->Run());
|
|
}
|
|
} // Anonymous namespace
|
|
|
|
Result KProcess::Initialize(KProcess* process, Core::System& system, std::string process_name,
|
|
ProcessType type, KResourceLimit* res_limit) {
|
|
auto& kernel = system.Kernel();
|
|
|
|
process->name = std::move(process_name);
|
|
process->resource_limit = res_limit;
|
|
process->system_resource_address = 0;
|
|
process->state = State::Created;
|
|
process->program_id = 0;
|
|
process->process_id = type == ProcessType::KernelInternal ? kernel.CreateNewKernelProcessID()
|
|
: kernel.CreateNewUserProcessID();
|
|
process->capabilities.InitializeForMetadatalessProcess();
|
|
process->is_initialized = true;
|
|
|
|
std::mt19937 rng(Settings::values.rng_seed.GetValue().value_or(std::time(nullptr)));
|
|
std::uniform_int_distribution<u64> distribution;
|
|
std::generate(process->random_entropy.begin(), process->random_entropy.end(),
|
|
[&] { return distribution(rng); });
|
|
|
|
kernel.AppendNewProcess(process);
|
|
|
|
// Clear remaining fields.
|
|
process->num_running_threads = 0;
|
|
process->is_signaled = false;
|
|
process->exception_thread = nullptr;
|
|
process->is_suspended = false;
|
|
process->schedule_count = 0;
|
|
process->is_handle_table_initialized = false;
|
|
|
|
// Open a reference to the resource limit.
|
|
process->resource_limit->Open();
|
|
|
|
R_SUCCEED();
|
|
}
|
|
|
|
void KProcess::DoWorkerTaskImpl() {
|
|
UNIMPLEMENTED();
|
|
}
|
|
|
|
KResourceLimit* KProcess::GetResourceLimit() const {
|
|
return resource_limit;
|
|
}
|
|
|
|
void KProcess::IncrementRunningThreadCount() {
|
|
ASSERT(num_running_threads.load() >= 0);
|
|
++num_running_threads;
|
|
}
|
|
|
|
void KProcess::DecrementRunningThreadCount() {
|
|
ASSERT(num_running_threads.load() > 0);
|
|
|
|
if (const auto prev = num_running_threads--; prev == 1) {
|
|
// TODO(bunnei): Process termination to be implemented when multiprocess is supported.
|
|
}
|
|
}
|
|
|
|
u64 KProcess::GetTotalPhysicalMemoryAvailable() {
|
|
const u64 capacity{resource_limit->GetFreeValue(LimitableResource::PhysicalMemoryMax) +
|
|
page_table.GetNormalMemorySize() + GetSystemResourceSize() + image_size +
|
|
main_thread_stack_size};
|
|
if (const auto pool_size = kernel.MemoryManager().GetSize(KMemoryManager::Pool::Application);
|
|
capacity != pool_size) {
|
|
LOG_WARNING(Kernel, "capacity {} != application pool size {}", capacity, pool_size);
|
|
}
|
|
if (capacity < memory_usage_capacity) {
|
|
return capacity;
|
|
}
|
|
return memory_usage_capacity;
|
|
}
|
|
|
|
u64 KProcess::GetTotalPhysicalMemoryAvailableWithoutSystemResource() {
|
|
return GetTotalPhysicalMemoryAvailable() - GetSystemResourceSize();
|
|
}
|
|
|
|
u64 KProcess::GetTotalPhysicalMemoryUsed() {
|
|
return image_size + main_thread_stack_size + page_table.GetNormalMemorySize() +
|
|
GetSystemResourceSize();
|
|
}
|
|
|
|
u64 KProcess::GetTotalPhysicalMemoryUsedWithoutSystemResource() {
|
|
return GetTotalPhysicalMemoryUsed() - GetSystemResourceUsage();
|
|
}
|
|
|
|
bool KProcess::ReleaseUserException(KThread* thread) {
|
|
KScopedSchedulerLock sl{kernel};
|
|
|
|
if (exception_thread == thread) {
|
|
exception_thread = nullptr;
|
|
|
|
// Remove waiter thread.
|
|
bool has_waiters{};
|
|
if (KThread* next = thread->RemoveKernelWaiterByKey(
|
|
std::addressof(has_waiters),
|
|
reinterpret_cast<uintptr_t>(std::addressof(exception_thread)));
|
|
next != nullptr) {
|
|
next->EndWait(ResultSuccess);
|
|
}
|
|
|
|
KScheduler::SetSchedulerUpdateNeeded(kernel);
|
|
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void KProcess::PinCurrentThread(s32 core_id) {
|
|
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
|
|
|
|
// Get the current thread.
|
|
KThread* cur_thread =
|
|
kernel.Scheduler(static_cast<std::size_t>(core_id)).GetSchedulerCurrentThread();
|
|
|
|
// If the thread isn't terminated, pin it.
|
|
if (!cur_thread->IsTerminationRequested()) {
|
|
// Pin it.
|
|
PinThread(core_id, cur_thread);
|
|
cur_thread->Pin(core_id);
|
|
|
|
// An update is needed.
|
|
KScheduler::SetSchedulerUpdateNeeded(kernel);
|
|
}
|
|
}
|
|
|
|
void KProcess::UnpinCurrentThread(s32 core_id) {
|
|
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
|
|
|
|
// Get the current thread.
|
|
KThread* cur_thread =
|
|
kernel.Scheduler(static_cast<std::size_t>(core_id)).GetSchedulerCurrentThread();
|
|
|
|
// Unpin it.
|
|
cur_thread->Unpin();
|
|
UnpinThread(core_id, cur_thread);
|
|
|
|
// An update is needed.
|
|
KScheduler::SetSchedulerUpdateNeeded(kernel);
|
|
}
|
|
|
|
void KProcess::UnpinThread(KThread* thread) {
|
|
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
|
|
|
|
// Get the thread's core id.
|
|
const auto core_id = thread->GetActiveCore();
|
|
|
|
// Unpin it.
|
|
UnpinThread(core_id, thread);
|
|
thread->Unpin();
|
|
|
|
// An update is needed.
|
|
KScheduler::SetSchedulerUpdateNeeded(kernel);
|
|
}
|
|
|
|
Result KProcess::AddSharedMemory(KSharedMemory* shmem, [[maybe_unused]] VAddr address,
|
|
[[maybe_unused]] size_t size) {
|
|
// Lock ourselves, to prevent concurrent access.
|
|
KScopedLightLock lk(state_lock);
|
|
|
|
// Try to find an existing info for the memory.
|
|
KSharedMemoryInfo* shemen_info = nullptr;
|
|
const auto iter = std::find_if(
|
|
shared_memory_list.begin(), shared_memory_list.end(),
|
|
[shmem](const KSharedMemoryInfo* info) { return info->GetSharedMemory() == shmem; });
|
|
if (iter != shared_memory_list.end()) {
|
|
shemen_info = *iter;
|
|
}
|
|
|
|
if (shemen_info == nullptr) {
|
|
shemen_info = KSharedMemoryInfo::Allocate(kernel);
|
|
R_UNLESS(shemen_info != nullptr, ResultOutOfMemory);
|
|
|
|
shemen_info->Initialize(shmem);
|
|
shared_memory_list.push_back(shemen_info);
|
|
}
|
|
|
|
// Open a reference to the shared memory and its info.
|
|
shmem->Open();
|
|
shemen_info->Open();
|
|
|
|
R_SUCCEED();
|
|
}
|
|
|
|
void KProcess::RemoveSharedMemory(KSharedMemory* shmem, [[maybe_unused]] VAddr address,
|
|
[[maybe_unused]] size_t size) {
|
|
// Lock ourselves, to prevent concurrent access.
|
|
KScopedLightLock lk(state_lock);
|
|
|
|
KSharedMemoryInfo* shemen_info = nullptr;
|
|
const auto iter = std::find_if(
|
|
shared_memory_list.begin(), shared_memory_list.end(),
|
|
[shmem](const KSharedMemoryInfo* info) { return info->GetSharedMemory() == shmem; });
|
|
if (iter != shared_memory_list.end()) {
|
|
shemen_info = *iter;
|
|
}
|
|
|
|
ASSERT(shemen_info != nullptr);
|
|
|
|
if (shemen_info->Close()) {
|
|
shared_memory_list.erase(iter);
|
|
KSharedMemoryInfo::Free(kernel, shemen_info);
|
|
}
|
|
|
|
// Close a reference to the shared memory.
|
|
shmem->Close();
|
|
}
|
|
|
|
void KProcess::RegisterThread(KThread* thread) {
|
|
KScopedLightLock lk{list_lock};
|
|
|
|
thread_list.push_back(thread);
|
|
}
|
|
|
|
void KProcess::UnregisterThread(KThread* thread) {
|
|
KScopedLightLock lk{list_lock};
|
|
|
|
thread_list.remove(thread);
|
|
}
|
|
|
|
u64 KProcess::GetFreeThreadCount() const {
|
|
if (resource_limit != nullptr) {
|
|
const auto current_value =
|
|
resource_limit->GetCurrentValue(LimitableResource::ThreadCountMax);
|
|
const auto limit_value = resource_limit->GetLimitValue(LimitableResource::ThreadCountMax);
|
|
return limit_value - current_value;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
Result KProcess::Reset() {
|
|
// Lock the process and the scheduler.
|
|
KScopedLightLock lk(state_lock);
|
|
KScopedSchedulerLock sl{kernel};
|
|
|
|
// Validate that we're in a state that we can reset.
|
|
R_UNLESS(state != State::Terminated, ResultInvalidState);
|
|
R_UNLESS(is_signaled, ResultInvalidState);
|
|
|
|
// Clear signaled.
|
|
is_signaled = false;
|
|
R_SUCCEED();
|
|
}
|
|
|
|
Result KProcess::SetActivity(ProcessActivity activity) {
|
|
// Lock ourselves and the scheduler.
|
|
KScopedLightLock lk{state_lock};
|
|
KScopedLightLock list_lk{list_lock};
|
|
KScopedSchedulerLock sl{kernel};
|
|
|
|
// Validate our state.
|
|
R_UNLESS(state != State::Terminating, ResultInvalidState);
|
|
R_UNLESS(state != State::Terminated, ResultInvalidState);
|
|
|
|
// Either pause or resume.
|
|
if (activity == ProcessActivity::Paused) {
|
|
// Verify that we're not suspended.
|
|
R_UNLESS(!is_suspended, ResultInvalidState);
|
|
|
|
// Suspend all threads.
|
|
for (auto* thread : GetThreadList()) {
|
|
thread->RequestSuspend(SuspendType::Process);
|
|
}
|
|
|
|
// Set ourselves as suspended.
|
|
SetSuspended(true);
|
|
} else {
|
|
ASSERT(activity == ProcessActivity::Runnable);
|
|
|
|
// Verify that we're suspended.
|
|
R_UNLESS(is_suspended, ResultInvalidState);
|
|
|
|
// Resume all threads.
|
|
for (auto* thread : GetThreadList()) {
|
|
thread->Resume(SuspendType::Process);
|
|
}
|
|
|
|
// Set ourselves as resumed.
|
|
SetSuspended(false);
|
|
}
|
|
|
|
R_SUCCEED();
|
|
}
|
|
|
|
Result KProcess::LoadFromMetadata(const FileSys::ProgramMetadata& metadata, std::size_t code_size) {
|
|
program_id = metadata.GetTitleID();
|
|
ideal_core = metadata.GetMainThreadCore();
|
|
is_64bit_process = metadata.Is64BitProgram();
|
|
system_resource_size = metadata.GetSystemResourceSize();
|
|
image_size = code_size;
|
|
|
|
KScopedResourceReservation memory_reservation(
|
|
resource_limit, LimitableResource::PhysicalMemoryMax, code_size + system_resource_size);
|
|
if (!memory_reservation.Succeeded()) {
|
|
LOG_ERROR(Kernel, "Could not reserve process memory requirements of size {:X} bytes",
|
|
code_size + system_resource_size);
|
|
R_RETURN(ResultLimitReached);
|
|
}
|
|
// Initialize proces address space
|
|
if (const Result result{page_table.InitializeForProcess(
|
|
metadata.GetAddressSpaceType(), false, false, false, KMemoryManager::Pool::Application,
|
|
0x8000000, code_size, &kernel.GetAppSystemResource(), resource_limit)};
|
|
result.IsError()) {
|
|
R_RETURN(result);
|
|
}
|
|
|
|
// Map process code region
|
|
if (const Result result{page_table.MapProcessCode(page_table.GetCodeRegionStart(),
|
|
code_size / PageSize, KMemoryState::Code,
|
|
KMemoryPermission::None)};
|
|
result.IsError()) {
|
|
R_RETURN(result);
|
|
}
|
|
|
|
// Initialize process capabilities
|
|
const auto& caps{metadata.GetKernelCapabilities()};
|
|
if (const Result result{
|
|
capabilities.InitializeForUserProcess(caps.data(), caps.size(), page_table)};
|
|
result.IsError()) {
|
|
R_RETURN(result);
|
|
}
|
|
|
|
// Set memory usage capacity
|
|
switch (metadata.GetAddressSpaceType()) {
|
|
case FileSys::ProgramAddressSpaceType::Is32Bit:
|
|
case FileSys::ProgramAddressSpaceType::Is36Bit:
|
|
case FileSys::ProgramAddressSpaceType::Is39Bit:
|
|
memory_usage_capacity = page_table.GetHeapRegionEnd() - page_table.GetHeapRegionStart();
|
|
break;
|
|
|
|
case FileSys::ProgramAddressSpaceType::Is32BitNoMap:
|
|
memory_usage_capacity = page_table.GetHeapRegionEnd() - page_table.GetHeapRegionStart() +
|
|
page_table.GetAliasRegionEnd() - page_table.GetAliasRegionStart();
|
|
break;
|
|
|
|
default:
|
|
ASSERT(false);
|
|
break;
|
|
}
|
|
|
|
// Create TLS region
|
|
R_TRY(this->CreateThreadLocalRegion(std::addressof(plr_address)));
|
|
memory_reservation.Commit();
|
|
|
|
R_RETURN(handle_table.Initialize(capabilities.GetHandleTableSize()));
|
|
}
|
|
|
|
void KProcess::Run(s32 main_thread_priority, u64 stack_size) {
|
|
ASSERT(AllocateMainThreadStack(stack_size) == ResultSuccess);
|
|
resource_limit->Reserve(LimitableResource::ThreadCountMax, 1);
|
|
|
|
const std::size_t heap_capacity{memory_usage_capacity - (main_thread_stack_size + image_size)};
|
|
ASSERT(!page_table.SetMaxHeapSize(heap_capacity).IsError());
|
|
|
|
ChangeState(State::Running);
|
|
|
|
SetupMainThread(kernel.System(), *this, main_thread_priority, main_thread_stack_top);
|
|
}
|
|
|
|
void KProcess::PrepareForTermination() {
|
|
ChangeState(State::Terminating);
|
|
|
|
const auto stop_threads = [this](const std::vector<KThread*>& in_thread_list) {
|
|
for (auto* thread : in_thread_list) {
|
|
if (thread->GetOwnerProcess() != this)
|
|
continue;
|
|
|
|
if (thread == GetCurrentThreadPointer(kernel))
|
|
continue;
|
|
|
|
// TODO(Subv): When are the other running/ready threads terminated?
|
|
ASSERT_MSG(thread->GetState() == ThreadState::Waiting,
|
|
"Exiting processes with non-waiting threads is currently unimplemented");
|
|
|
|
thread->Exit();
|
|
}
|
|
};
|
|
|
|
stop_threads(kernel.System().GlobalSchedulerContext().GetThreadList());
|
|
|
|
this->DeleteThreadLocalRegion(plr_address);
|
|
plr_address = 0;
|
|
|
|
if (resource_limit) {
|
|
resource_limit->Release(LimitableResource::PhysicalMemoryMax,
|
|
main_thread_stack_size + image_size);
|
|
}
|
|
|
|
ChangeState(State::Terminated);
|
|
}
|
|
|
|
void KProcess::Finalize() {
|
|
// Free all shared memory infos.
|
|
{
|
|
auto it = shared_memory_list.begin();
|
|
while (it != shared_memory_list.end()) {
|
|
KSharedMemoryInfo* info = *it;
|
|
KSharedMemory* shmem = info->GetSharedMemory();
|
|
|
|
while (!info->Close()) {
|
|
shmem->Close();
|
|
}
|
|
|
|
shmem->Close();
|
|
|
|
it = shared_memory_list.erase(it);
|
|
KSharedMemoryInfo::Free(kernel, info);
|
|
}
|
|
}
|
|
|
|
// Release memory to the resource limit.
|
|
if (resource_limit != nullptr) {
|
|
resource_limit->Close();
|
|
resource_limit = nullptr;
|
|
}
|
|
|
|
// Finalize the page table.
|
|
page_table.Finalize();
|
|
|
|
// Perform inherited finalization.
|
|
KAutoObjectWithSlabHeapAndContainer<KProcess, KWorkerTask>::Finalize();
|
|
}
|
|
|
|
Result KProcess::CreateThreadLocalRegion(VAddr* out) {
|
|
KThreadLocalPage* tlp = nullptr;
|
|
VAddr tlr = 0;
|
|
|
|
// See if we can get a region from a partially used TLP.
|
|
{
|
|
KScopedSchedulerLock sl{kernel};
|
|
|
|
if (auto it = partially_used_tlp_tree.begin(); it != partially_used_tlp_tree.end()) {
|
|
tlr = it->Reserve();
|
|
ASSERT(tlr != 0);
|
|
|
|
if (it->IsAllUsed()) {
|
|
tlp = std::addressof(*it);
|
|
partially_used_tlp_tree.erase(it);
|
|
fully_used_tlp_tree.insert(*tlp);
|
|
}
|
|
|
|
*out = tlr;
|
|
R_SUCCEED();
|
|
}
|
|
}
|
|
|
|
// Allocate a new page.
|
|
tlp = KThreadLocalPage::Allocate(kernel);
|
|
R_UNLESS(tlp != nullptr, ResultOutOfMemory);
|
|
auto tlp_guard = SCOPE_GUARD({ KThreadLocalPage::Free(kernel, tlp); });
|
|
|
|
// Initialize the new page.
|
|
R_TRY(tlp->Initialize(kernel, this));
|
|
|
|
// Reserve a TLR.
|
|
tlr = tlp->Reserve();
|
|
ASSERT(tlr != 0);
|
|
|
|
// Insert into our tree.
|
|
{
|
|
KScopedSchedulerLock sl{kernel};
|
|
if (tlp->IsAllUsed()) {
|
|
fully_used_tlp_tree.insert(*tlp);
|
|
} else {
|
|
partially_used_tlp_tree.insert(*tlp);
|
|
}
|
|
}
|
|
|
|
// We succeeded!
|
|
tlp_guard.Cancel();
|
|
*out = tlr;
|
|
R_SUCCEED();
|
|
}
|
|
|
|
Result KProcess::DeleteThreadLocalRegion(VAddr addr) {
|
|
KThreadLocalPage* page_to_free = nullptr;
|
|
|
|
// Release the region.
|
|
{
|
|
KScopedSchedulerLock sl{kernel};
|
|
|
|
// Try to find the page in the partially used list.
|
|
auto it = partially_used_tlp_tree.find_key(Common::AlignDown(addr, PageSize));
|
|
if (it == partially_used_tlp_tree.end()) {
|
|
// If we don't find it, it has to be in the fully used list.
|
|
it = fully_used_tlp_tree.find_key(Common::AlignDown(addr, PageSize));
|
|
R_UNLESS(it != fully_used_tlp_tree.end(), ResultInvalidAddress);
|
|
|
|
// Release the region.
|
|
it->Release(addr);
|
|
|
|
// Move the page out of the fully used list.
|
|
KThreadLocalPage* tlp = std::addressof(*it);
|
|
fully_used_tlp_tree.erase(it);
|
|
if (tlp->IsAllFree()) {
|
|
page_to_free = tlp;
|
|
} else {
|
|
partially_used_tlp_tree.insert(*tlp);
|
|
}
|
|
} else {
|
|
// Release the region.
|
|
it->Release(addr);
|
|
|
|
// Handle the all-free case.
|
|
KThreadLocalPage* tlp = std::addressof(*it);
|
|
if (tlp->IsAllFree()) {
|
|
partially_used_tlp_tree.erase(it);
|
|
page_to_free = tlp;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we should free the page it was in, do so.
|
|
if (page_to_free != nullptr) {
|
|
page_to_free->Finalize();
|
|
|
|
KThreadLocalPage::Free(kernel, page_to_free);
|
|
}
|
|
|
|
R_SUCCEED();
|
|
}
|
|
|
|
bool KProcess::InsertWatchpoint(Core::System& system, VAddr addr, u64 size,
|
|
DebugWatchpointType type) {
|
|
const auto watch{std::find_if(watchpoints.begin(), watchpoints.end(), [&](const auto& wp) {
|
|
return wp.type == DebugWatchpointType::None;
|
|
})};
|
|
|
|
if (watch == watchpoints.end()) {
|
|
return false;
|
|
}
|
|
|
|
watch->start_address = addr;
|
|
watch->end_address = addr + size;
|
|
watch->type = type;
|
|
|
|
for (VAddr page = Common::AlignDown(addr, PageSize); page < addr + size; page += PageSize) {
|
|
debug_page_refcounts[page]++;
|
|
system.Memory().MarkRegionDebug(page, PageSize, true);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool KProcess::RemoveWatchpoint(Core::System& system, VAddr addr, u64 size,
|
|
DebugWatchpointType type) {
|
|
const auto watch{std::find_if(watchpoints.begin(), watchpoints.end(), [&](const auto& wp) {
|
|
return wp.start_address == addr && wp.end_address == addr + size && wp.type == type;
|
|
})};
|
|
|
|
if (watch == watchpoints.end()) {
|
|
return false;
|
|
}
|
|
|
|
watch->start_address = 0;
|
|
watch->end_address = 0;
|
|
watch->type = DebugWatchpointType::None;
|
|
|
|
for (VAddr page = Common::AlignDown(addr, PageSize); page < addr + size; page += PageSize) {
|
|
debug_page_refcounts[page]--;
|
|
if (!debug_page_refcounts[page]) {
|
|
system.Memory().MarkRegionDebug(page, PageSize, false);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void KProcess::LoadModule(CodeSet code_set, VAddr base_addr) {
|
|
const auto ReprotectSegment = [&](const CodeSet::Segment& segment,
|
|
Svc::MemoryPermission permission) {
|
|
page_table.SetProcessMemoryPermission(segment.addr + base_addr, segment.size, permission);
|
|
};
|
|
|
|
kernel.System().Memory().WriteBlock(*this, base_addr, code_set.memory.data(),
|
|
code_set.memory.size());
|
|
|
|
ReprotectSegment(code_set.CodeSegment(), Svc::MemoryPermission::ReadExecute);
|
|
ReprotectSegment(code_set.RODataSegment(), Svc::MemoryPermission::Read);
|
|
ReprotectSegment(code_set.DataSegment(), Svc::MemoryPermission::ReadWrite);
|
|
}
|
|
|
|
bool KProcess::IsSignaled() const {
|
|
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
|
|
return is_signaled;
|
|
}
|
|
|
|
KProcess::KProcess(KernelCore& kernel_)
|
|
: KAutoObjectWithSlabHeapAndContainer{kernel_}, page_table{kernel_.System()},
|
|
handle_table{kernel_}, address_arbiter{kernel_.System()}, condition_var{kernel_.System()},
|
|
state_lock{kernel_}, list_lock{kernel_} {}
|
|
|
|
KProcess::~KProcess() = default;
|
|
|
|
void KProcess::ChangeState(State new_state) {
|
|
if (state == new_state) {
|
|
return;
|
|
}
|
|
|
|
state = new_state;
|
|
is_signaled = true;
|
|
NotifyAvailable();
|
|
}
|
|
|
|
Result KProcess::AllocateMainThreadStack(std::size_t stack_size) {
|
|
// Ensure that we haven't already allocated stack.
|
|
ASSERT(main_thread_stack_size == 0);
|
|
|
|
// Ensure that we're allocating a valid stack.
|
|
stack_size = Common::AlignUp(stack_size, PageSize);
|
|
// R_UNLESS(stack_size + image_size <= m_max_process_memory, ResultOutOfMemory);
|
|
R_UNLESS(stack_size + image_size >= image_size, ResultOutOfMemory);
|
|
|
|
// Place a tentative reservation of memory for our new stack.
|
|
KScopedResourceReservation mem_reservation(this, Svc::LimitableResource::PhysicalMemoryMax,
|
|
stack_size);
|
|
R_UNLESS(mem_reservation.Succeeded(), ResultLimitReached);
|
|
|
|
// Allocate and map our stack.
|
|
if (stack_size) {
|
|
KProcessAddress stack_bottom;
|
|
R_TRY(page_table.MapPages(std::addressof(stack_bottom), stack_size / PageSize,
|
|
KMemoryState::Stack, KMemoryPermission::UserReadWrite));
|
|
|
|
main_thread_stack_top = stack_bottom + stack_size;
|
|
main_thread_stack_size = stack_size;
|
|
}
|
|
|
|
// We succeeded! Commit our memory reservation.
|
|
mem_reservation.Commit();
|
|
|
|
R_SUCCEED();
|
|
}
|
|
|
|
} // namespace Kernel
|