// Copyright 2018 yuzu emulator team // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include #include #include #include "common/alignment.h" #include "common/assert.h" #include "common/logging/log.h" #include "common/microprofile.h" #include "common/string_util.h" #include "core/arm/exclusive_monitor.h" #include "core/core.h" #include "core/core_cpu.h" #include "core/core_timing.h" #include "core/hle/kernel/address_arbiter.h" #include "core/hle/kernel/client_port.h" #include "core/hle/kernel/client_session.h" #include "core/hle/kernel/event.h" #include "core/hle/kernel/handle_table.h" #include "core/hle/kernel/kernel.h" #include "core/hle/kernel/mutex.h" #include "core/hle/kernel/process.h" #include "core/hle/kernel/resource_limit.h" #include "core/hle/kernel/scheduler.h" #include "core/hle/kernel/shared_memory.h" #include "core/hle/kernel/svc.h" #include "core/hle/kernel/svc_wrap.h" #include "core/hle/kernel/thread.h" #include "core/hle/lock.h" #include "core/hle/result.h" #include "core/hle/service/service.h" namespace Kernel { namespace { // Checks if address + size is greater than the given address // This can return false if the size causes an overflow of a 64-bit type // or if the given size is zero. constexpr bool IsValidAddressRange(VAddr address, u64 size) { return address + size > address; } // Checks if a given address range lies within a larger address range. constexpr bool IsInsideAddressRange(VAddr address, u64 size, VAddr address_range_begin, VAddr address_range_end) { const VAddr end_address = address + size - 1; return address_range_begin <= address && end_address <= address_range_end - 1; } bool IsInsideAddressSpace(const VMManager& vm, VAddr address, u64 size) { return IsInsideAddressRange(address, size, vm.GetAddressSpaceBaseAddress(), vm.GetAddressSpaceEndAddress()); } bool IsInsideNewMapRegion(const VMManager& vm, VAddr address, u64 size) { return IsInsideAddressRange(address, size, vm.GetNewMapRegionBaseAddress(), vm.GetNewMapRegionEndAddress()); } // Helper function that performs the common sanity checks for svcMapMemory // and svcUnmapMemory. This is doable, as both functions perform their sanitizing // in the same order. ResultCode MapUnmapMemorySanityChecks(const VMManager& vm_manager, VAddr dst_addr, VAddr src_addr, u64 size) { if (!Common::Is4KBAligned(dst_addr) || !Common::Is4KBAligned(src_addr)) { return ERR_INVALID_ADDRESS; } if (size == 0 || !Common::Is4KBAligned(size)) { return ERR_INVALID_SIZE; } if (!IsValidAddressRange(dst_addr, size)) { return ERR_INVALID_ADDRESS_STATE; } if (!IsValidAddressRange(src_addr, size)) { return ERR_INVALID_ADDRESS_STATE; } if (!IsInsideAddressSpace(vm_manager, src_addr, size)) { return ERR_INVALID_ADDRESS_STATE; } if (!IsInsideNewMapRegion(vm_manager, dst_addr, size)) { return ERR_INVALID_MEMORY_RANGE; } const VAddr dst_end_address = dst_addr + size; if (dst_end_address > vm_manager.GetHeapRegionBaseAddress() && vm_manager.GetHeapRegionEndAddress() > dst_addr) { return ERR_INVALID_MEMORY_RANGE; } if (dst_end_address > vm_manager.GetMapRegionBaseAddress() && vm_manager.GetMapRegionEndAddress() > dst_addr) { return ERR_INVALID_MEMORY_RANGE; } return RESULT_SUCCESS; } } // Anonymous namespace /// Set the process heap to a given Size. It can both extend and shrink the heap. static ResultCode SetHeapSize(VAddr* heap_addr, u64 heap_size) { LOG_TRACE(Kernel_SVC, "called, heap_size=0x{:X}", heap_size); // Size must be a multiple of 0x200000 (2MB) and be equal to or less than 4GB. if ((heap_size & 0xFFFFFFFE001FFFFF) != 0) { return ERR_INVALID_SIZE; } auto& process = *Core::CurrentProcess(); const VAddr heap_base = process.VMManager().GetHeapRegionBaseAddress(); CASCADE_RESULT(*heap_addr, process.HeapAllocate(heap_base, heap_size, VMAPermission::ReadWrite)); return RESULT_SUCCESS; } static ResultCode SetMemoryAttribute(VAddr addr, u64 size, u32 state0, u32 state1) { LOG_WARNING(Kernel_SVC, "(STUBBED) called, addr=0x{:X}, size=0x{:X}, state0=0x{:X}, state1=0x{:X}", addr, size, state0, state1); return RESULT_SUCCESS; } /// Maps a memory range into a different range. static ResultCode MapMemory(VAddr dst_addr, VAddr src_addr, u64 size) { LOG_TRACE(Kernel_SVC, "called, dst_addr=0x{:X}, src_addr=0x{:X}, size=0x{:X}", dst_addr, src_addr, size); auto* const current_process = Core::CurrentProcess(); const auto& vm_manager = current_process->VMManager(); const auto result = MapUnmapMemorySanityChecks(vm_manager, dst_addr, src_addr, size); if (result != RESULT_SUCCESS) { return result; } return current_process->MirrorMemory(dst_addr, src_addr, size); } /// Unmaps a region that was previously mapped with svcMapMemory static ResultCode UnmapMemory(VAddr dst_addr, VAddr src_addr, u64 size) { LOG_TRACE(Kernel_SVC, "called, dst_addr=0x{:X}, src_addr=0x{:X}, size=0x{:X}", dst_addr, src_addr, size); auto* const current_process = Core::CurrentProcess(); const auto& vm_manager = current_process->VMManager(); const auto result = MapUnmapMemorySanityChecks(vm_manager, dst_addr, src_addr, size); if (result != RESULT_SUCCESS) { return result; } return current_process->UnmapMemory(dst_addr, src_addr, size); } /// Connect to an OS service given the port name, returns the handle to the port to out static ResultCode ConnectToNamedPort(Handle* out_handle, VAddr port_name_address) { if (!Memory::IsValidVirtualAddress(port_name_address)) { return ERR_NOT_FOUND; } static constexpr std::size_t PortNameMaxLength = 11; // Read 1 char beyond the max allowed port name to detect names that are too long. std::string port_name = Memory::ReadCString(port_name_address, PortNameMaxLength + 1); if (port_name.size() > PortNameMaxLength) { return ERR_PORT_NAME_TOO_LONG; } LOG_TRACE(Kernel_SVC, "called port_name={}", port_name); auto& kernel = Core::System::GetInstance().Kernel(); auto it = kernel.FindNamedPort(port_name); if (!kernel.IsValidNamedPort(it)) { LOG_WARNING(Kernel_SVC, "tried to connect to unknown port: {}", port_name); return ERR_NOT_FOUND; } auto client_port = it->second; SharedPtr client_session; CASCADE_RESULT(client_session, client_port->Connect()); // Return the client session auto& handle_table = Core::CurrentProcess()->GetHandleTable(); CASCADE_RESULT(*out_handle, handle_table.Create(client_session)); return RESULT_SUCCESS; } /// Makes a blocking IPC call to an OS service. static ResultCode SendSyncRequest(Handle handle) { const auto& handle_table = Core::CurrentProcess()->GetHandleTable(); SharedPtr session = handle_table.Get(handle); if (!session) { LOG_ERROR(Kernel_SVC, "called with invalid handle=0x{:08X}", handle); return ERR_INVALID_HANDLE; } LOG_TRACE(Kernel_SVC, "called handle=0x{:08X}({})", handle, session->GetName()); Core::System::GetInstance().PrepareReschedule(); // TODO(Subv): svcSendSyncRequest should put the caller thread to sleep while the server // responds and cause a reschedule. return session->SendSyncRequest(GetCurrentThread()); } /// Get the ID for the specified thread. static ResultCode GetThreadId(u32* thread_id, Handle thread_handle) { LOG_TRACE(Kernel_SVC, "called thread=0x{:08X}", thread_handle); const auto& handle_table = Core::CurrentProcess()->GetHandleTable(); const SharedPtr thread = handle_table.Get(thread_handle); if (!thread) { return ERR_INVALID_HANDLE; } *thread_id = thread->GetThreadID(); return RESULT_SUCCESS; } /// Get the ID of the specified process static ResultCode GetProcessId(u32* process_id, Handle process_handle) { LOG_TRACE(Kernel_SVC, "called process=0x{:08X}", process_handle); const auto& handle_table = Core::CurrentProcess()->GetHandleTable(); const SharedPtr process = handle_table.Get(process_handle); if (!process) { return ERR_INVALID_HANDLE; } *process_id = process->GetProcessID(); return RESULT_SUCCESS; } /// Default thread wakeup callback for WaitSynchronization static bool DefaultThreadWakeupCallback(ThreadWakeupReason reason, SharedPtr thread, SharedPtr object, std::size_t index) { ASSERT(thread->GetStatus() == ThreadStatus::WaitSynchAny); if (reason == ThreadWakeupReason::Timeout) { thread->SetWaitSynchronizationResult(RESULT_TIMEOUT); return true; } ASSERT(reason == ThreadWakeupReason::Signal); thread->SetWaitSynchronizationResult(RESULT_SUCCESS); thread->SetWaitSynchronizationOutput(static_cast(index)); return true; }; /// Wait for the given handles to synchronize, timeout after the specified nanoseconds static ResultCode WaitSynchronization(Handle* index, VAddr handles_address, u64 handle_count, s64 nano_seconds) { LOG_TRACE(Kernel_SVC, "called handles_address=0x{:X}, handle_count={}, nano_seconds={}", handles_address, handle_count, nano_seconds); if (!Memory::IsValidVirtualAddress(handles_address)) return ERR_INVALID_POINTER; static constexpr u64 MaxHandles = 0x40; if (handle_count > MaxHandles) return ResultCode(ErrorModule::Kernel, ErrCodes::TooLarge); auto* const thread = GetCurrentThread(); using ObjectPtr = Thread::ThreadWaitObjects::value_type; Thread::ThreadWaitObjects objects(handle_count); const auto& handle_table = Core::CurrentProcess()->GetHandleTable(); for (u64 i = 0; i < handle_count; ++i) { const Handle handle = Memory::Read32(handles_address + i * sizeof(Handle)); const auto object = handle_table.Get(handle); if (object == nullptr) { return ERR_INVALID_HANDLE; } objects[i] = object; } // Find the first object that is acquirable in the provided list of objects auto itr = std::find_if(objects.begin(), objects.end(), [thread](const ObjectPtr& object) { return !object->ShouldWait(thread); }); if (itr != objects.end()) { // We found a ready object, acquire it and set the result value WaitObject* object = itr->get(); object->Acquire(thread); *index = static_cast(std::distance(objects.begin(), itr)); return RESULT_SUCCESS; } // No objects were ready to be acquired, prepare to suspend the thread. // If a timeout value of 0 was provided, just return the Timeout error code instead of // suspending the thread. if (nano_seconds == 0) return RESULT_TIMEOUT; for (auto& object : objects) object->AddWaitingThread(thread); thread->SetWaitObjects(std::move(objects)); thread->SetStatus(ThreadStatus::WaitSynchAny); // Create an event to wake the thread up after the specified nanosecond delay has passed thread->WakeAfterDelay(nano_seconds); thread->SetWakeupCallback(DefaultThreadWakeupCallback); Core::System::GetInstance().CpuCore(thread->GetProcessorID()).PrepareReschedule(); return RESULT_TIMEOUT; } /// Resumes a thread waiting on WaitSynchronization static ResultCode CancelSynchronization(Handle thread_handle) { LOG_TRACE(Kernel_SVC, "called thread=0x{:X}", thread_handle); const auto& handle_table = Core::CurrentProcess()->GetHandleTable(); const SharedPtr thread = handle_table.Get(thread_handle); if (!thread) { return ERR_INVALID_HANDLE; } ASSERT(thread->GetStatus() == ThreadStatus::WaitSynchAny); thread->SetWaitSynchronizationResult( ResultCode(ErrorModule::Kernel, ErrCodes::SynchronizationCanceled)); thread->ResumeFromWait(); return RESULT_SUCCESS; } /// Attempts to locks a mutex, creating it if it does not already exist static ResultCode ArbitrateLock(Handle holding_thread_handle, VAddr mutex_addr, Handle requesting_thread_handle) { LOG_TRACE(Kernel_SVC, "called holding_thread_handle=0x{:08X}, mutex_addr=0x{:X}, " "requesting_current_thread_handle=0x{:08X}", holding_thread_handle, mutex_addr, requesting_thread_handle); if (Memory::IsKernelVirtualAddress(mutex_addr)) { return ERR_INVALID_ADDRESS_STATE; } if (!Common::IsWordAligned(mutex_addr)) { return ERR_INVALID_ADDRESS; } auto& handle_table = Core::CurrentProcess()->GetHandleTable(); return Mutex::TryAcquire(handle_table, mutex_addr, holding_thread_handle, requesting_thread_handle); } /// Unlock a mutex static ResultCode ArbitrateUnlock(VAddr mutex_addr) { LOG_TRACE(Kernel_SVC, "called mutex_addr=0x{:X}", mutex_addr); if (Memory::IsKernelVirtualAddress(mutex_addr)) { return ERR_INVALID_ADDRESS_STATE; } if (!Common::IsWordAligned(mutex_addr)) { return ERR_INVALID_ADDRESS; } return Mutex::Release(mutex_addr); } enum class BreakType : u32 { Panic = 0, AssertionFailed = 1, PreNROLoad = 3, PostNROLoad = 4, PreNROUnload = 5, PostNROUnload = 6, }; struct BreakReason { union { u32 raw; BitField<0, 30, BreakType> break_type; BitField<31, 1, u32> signal_debugger; }; }; /// Break program execution static void Break(u32 reason, u64 info1, u64 info2) { BreakReason break_reason{reason}; switch (break_reason.break_type) { case BreakType::Panic: LOG_CRITICAL(Debug_Emulated, "Signalling debugger, PANIC! info1=0x{:016X}, info2=0x{:016X}", info1, info2); break; case BreakType::AssertionFailed: LOG_CRITICAL(Debug_Emulated, "Signalling debugger, Assertion failed! info1=0x{:016X}, info2=0x{:016X}", info1, info2); break; case BreakType::PreNROLoad: LOG_WARNING( Debug_Emulated, "Signalling debugger, Attempting to load an NRO at 0x{:016X} with size 0x{:016X}", info1, info2); break; case BreakType::PostNROLoad: LOG_WARNING(Debug_Emulated, "Signalling debugger, Loaded an NRO at 0x{:016X} with size 0x{:016X}", info1, info2); break; case BreakType::PreNROUnload: LOG_WARNING( Debug_Emulated, "Signalling debugger, Attempting to unload an NRO at 0x{:016X} with size 0x{:016X}", info1, info2); break; case BreakType::PostNROUnload: LOG_WARNING(Debug_Emulated, "Signalling debugger, Unloaded an NRO at 0x{:016X} with size 0x{:016X}", info1, info2); break; default: LOG_WARNING( Debug_Emulated, "Signalling debugger, Unknown break reason {}, info1=0x{:016X}, info2=0x{:016X}", static_cast(break_reason.break_type.Value()), info1, info2); break; } if (!break_reason.signal_debugger) { LOG_CRITICAL( Debug_Emulated, "Emulated program broke execution! reason=0x{:016X}, info1=0x{:016X}, info2=0x{:016X}", reason, info1, info2); ASSERT(false); Core::CurrentProcess()->PrepareForTermination(); // Kill the current thread GetCurrentThread()->Stop(); Core::System::GetInstance().PrepareReschedule(); } } /// Used to output a message on a debug hardware unit - does nothing on a retail unit static void OutputDebugString(VAddr address, u64 len) { if (len == 0) { return; } std::string str(len, '\0'); Memory::ReadBlock(address, str.data(), str.size()); LOG_DEBUG(Debug_Emulated, "{}", str); } /// Gets system/memory information for the current process static ResultCode GetInfo(u64* result, u64 info_id, u64 handle, u64 info_sub_id) { LOG_TRACE(Kernel_SVC, "called info_id=0x{:X}, info_sub_id=0x{:X}, handle=0x{:08X}", info_id, info_sub_id, handle); enum class GetInfoType : u64 { // 1.0.0+ AllowedCpuIdBitmask = 0, AllowedThreadPrioBitmask = 1, MapRegionBaseAddr = 2, MapRegionSize = 3, HeapRegionBaseAddr = 4, HeapRegionSize = 5, TotalMemoryUsage = 6, TotalHeapUsage = 7, IsCurrentProcessBeingDebugged = 8, ResourceHandleLimit = 9, IdleTickCount = 10, RandomEntropy = 11, PerformanceCounter = 0xF0000002, // 2.0.0+ ASLRRegionBaseAddr = 12, ASLRRegionSize = 13, NewMapRegionBaseAddr = 14, NewMapRegionSize = 15, // 3.0.0+ IsVirtualAddressMemoryEnabled = 16, PersonalMmHeapUsage = 17, TitleId = 18, // 4.0.0+ PrivilegedProcessId = 19, // 5.0.0+ UserExceptionContextAddr = 20, ThreadTickCount = 0xF0000002, }; const auto* current_process = Core::CurrentProcess(); const auto& vm_manager = current_process->VMManager(); switch (static_cast(info_id)) { case GetInfoType::AllowedCpuIdBitmask: *result = current_process->GetAllowedProcessorMask(); break; case GetInfoType::AllowedThreadPrioBitmask: *result = current_process->GetAllowedThreadPriorityMask(); break; case GetInfoType::MapRegionBaseAddr: *result = vm_manager.GetMapRegionBaseAddress(); break; case GetInfoType::MapRegionSize: *result = vm_manager.GetMapRegionSize(); break; case GetInfoType::HeapRegionBaseAddr: *result = vm_manager.GetHeapRegionBaseAddress(); break; case GetInfoType::HeapRegionSize: *result = vm_manager.GetHeapRegionSize(); break; case GetInfoType::TotalMemoryUsage: *result = vm_manager.GetTotalMemoryUsage(); break; case GetInfoType::TotalHeapUsage: *result = vm_manager.GetTotalHeapUsage(); break; case GetInfoType::IsCurrentProcessBeingDebugged: *result = 0; break; case GetInfoType::RandomEntropy: *result = 0; break; case GetInfoType::ASLRRegionBaseAddr: *result = vm_manager.GetASLRRegionBaseAddress(); break; case GetInfoType::ASLRRegionSize: *result = vm_manager.GetASLRRegionSize(); break; case GetInfoType::NewMapRegionBaseAddr: *result = vm_manager.GetNewMapRegionBaseAddress(); break; case GetInfoType::NewMapRegionSize: *result = vm_manager.GetNewMapRegionSize(); break; case GetInfoType::IsVirtualAddressMemoryEnabled: *result = current_process->IsVirtualMemoryEnabled(); break; case GetInfoType::TitleId: *result = current_process->GetTitleID(); break; case GetInfoType::PrivilegedProcessId: LOG_WARNING(Kernel_SVC, "(STUBBED) Attempted to query privileged process id bounds, returned 0"); *result = 0; break; case GetInfoType::UserExceptionContextAddr: LOG_WARNING(Kernel_SVC, "(STUBBED) Attempted to query user exception context address, returned 0"); *result = 0; break; case GetInfoType::ThreadTickCount: { constexpr u64 num_cpus = 4; if (info_sub_id != 0xFFFFFFFFFFFFFFFF && info_sub_id >= num_cpus) { return ERR_INVALID_COMBINATION_KERNEL; } const auto thread = current_process->GetHandleTable().Get(static_cast(handle)); if (!thread) { return ERR_INVALID_HANDLE; } auto& system = Core::System::GetInstance(); const auto& scheduler = system.CurrentScheduler(); const auto* const current_thread = scheduler.GetCurrentThread(); const bool same_thread = current_thread == thread; const u64 prev_ctx_ticks = scheduler.GetLastContextSwitchTicks(); u64 out_ticks = 0; if (same_thread && info_sub_id == 0xFFFFFFFFFFFFFFFF) { const u64 thread_ticks = current_thread->GetTotalCPUTimeTicks(); out_ticks = thread_ticks + (CoreTiming::GetTicks() - prev_ctx_ticks); } else if (same_thread && info_sub_id == system.CurrentCoreIndex()) { out_ticks = CoreTiming::GetTicks() - prev_ctx_ticks; } *result = out_ticks; break; } default: UNIMPLEMENTED(); } return RESULT_SUCCESS; } /// Sets the thread activity static ResultCode SetThreadActivity(Handle handle, u32 unknown) { LOG_WARNING(Kernel_SVC, "(STUBBED) called, handle=0x{:08X}, unknown=0x{:08X}", handle, unknown); return RESULT_SUCCESS; } /// Gets the thread context static ResultCode GetThreadContext(VAddr thread_context, Handle handle) { LOG_DEBUG(Kernel_SVC, "called, context=0x{:08X}, thread=0x{:X}", thread_context, handle); const auto* current_process = Core::CurrentProcess(); const SharedPtr thread = current_process->GetHandleTable().Get(handle); if (!thread) { return ERR_INVALID_HANDLE; } if (thread->GetOwnerProcess() != current_process) { return ERR_INVALID_HANDLE; } if (thread == GetCurrentThread()) { return ERR_ALREADY_REGISTERED; } Core::ARM_Interface::ThreadContext ctx = thread->GetContext(); // Mask away mode bits, interrupt bits, IL bit, and other reserved bits. ctx.pstate &= 0xFF0FFE20; // If 64-bit, we can just write the context registers directly and we're good. // However, if 32-bit, we have to ensure some registers are zeroed out. if (!current_process->Is64BitProcess()) { std::fill(ctx.cpu_registers.begin() + 15, ctx.cpu_registers.end(), 0); std::fill(ctx.vector_registers.begin() + 16, ctx.vector_registers.end(), u128{}); } Memory::WriteBlock(thread_context, &ctx, sizeof(ctx)); return RESULT_SUCCESS; } /// Gets the priority for the specified thread static ResultCode GetThreadPriority(u32* priority, Handle handle) { const auto& handle_table = Core::CurrentProcess()->GetHandleTable(); const SharedPtr thread = handle_table.Get(handle); if (!thread) { return ERR_INVALID_HANDLE; } *priority = thread->GetPriority(); return RESULT_SUCCESS; } /// Sets the priority for the specified thread static ResultCode SetThreadPriority(Handle handle, u32 priority) { if (priority > THREADPRIO_LOWEST) { return ERR_INVALID_THREAD_PRIORITY; } const auto* const current_process = Core::CurrentProcess(); // Note: The kernel uses the current process's resource limit instead of // the one from the thread owner's resource limit. const ResourceLimit& resource_limit = current_process->GetResourceLimit(); if (resource_limit.GetMaxResourceValue(ResourceType::Priority) > priority) { return ERR_INVALID_THREAD_PRIORITY; } SharedPtr thread = current_process->GetHandleTable().Get(handle); if (!thread) { return ERR_INVALID_HANDLE; } thread->SetPriority(priority); Core::System::GetInstance().CpuCore(thread->GetProcessorID()).PrepareReschedule(); return RESULT_SUCCESS; } /// Get which CPU core is executing the current thread static u32 GetCurrentProcessorNumber() { LOG_TRACE(Kernel_SVC, "called"); return GetCurrentThread()->GetProcessorID(); } static ResultCode MapSharedMemory(Handle shared_memory_handle, VAddr addr, u64 size, u32 permissions) { LOG_TRACE(Kernel_SVC, "called, shared_memory_handle=0x{:X}, addr=0x{:X}, size=0x{:X}, permissions=0x{:08X}", shared_memory_handle, addr, size, permissions); if (!Common::Is4KBAligned(addr)) { return ERR_INVALID_ADDRESS; } if (size == 0 || !Common::Is4KBAligned(size)) { return ERR_INVALID_SIZE; } if (!IsValidAddressRange(addr, size)) { return ERR_INVALID_ADDRESS_STATE; } const auto permissions_type = static_cast(permissions); if (permissions_type != MemoryPermission::Read && permissions_type != MemoryPermission::ReadWrite) { LOG_ERROR(Kernel_SVC, "Invalid permissions=0x{:08X}", permissions); return ERR_INVALID_MEMORY_PERMISSIONS; } auto* const current_process = Core::CurrentProcess(); auto shared_memory = current_process->GetHandleTable().Get(shared_memory_handle); if (!shared_memory) { return ERR_INVALID_HANDLE; } const auto& vm_manager = current_process->VMManager(); if (!vm_manager.IsWithinASLRRegion(addr, size)) { return ERR_INVALID_MEMORY_RANGE; } return shared_memory->Map(current_process, addr, permissions_type, MemoryPermission::DontCare); } static ResultCode UnmapSharedMemory(Handle shared_memory_handle, VAddr addr, u64 size) { LOG_WARNING(Kernel_SVC, "called, shared_memory_handle=0x{:08X}, addr=0x{:X}, size=0x{:X}", shared_memory_handle, addr, size); if (!Common::Is4KBAligned(addr)) { return ERR_INVALID_ADDRESS; } if (size == 0 || !Common::Is4KBAligned(size)) { return ERR_INVALID_SIZE; } if (!IsValidAddressRange(addr, size)) { return ERR_INVALID_ADDRESS_STATE; } auto* const current_process = Core::CurrentProcess(); auto shared_memory = current_process->GetHandleTable().Get(shared_memory_handle); if (!shared_memory) { return ERR_INVALID_HANDLE; } const auto& vm_manager = current_process->VMManager(); if (!vm_manager.IsWithinASLRRegion(addr, size)) { return ERR_INVALID_MEMORY_RANGE; } return shared_memory->Unmap(current_process, addr); } /// Query process memory static ResultCode QueryProcessMemory(MemoryInfo* memory_info, PageInfo* /*page_info*/, Handle process_handle, u64 addr) { const auto& handle_table = Core::CurrentProcess()->GetHandleTable(); SharedPtr process = handle_table.Get(process_handle); if (!process) { return ERR_INVALID_HANDLE; } auto vma = process->VMManager().FindVMA(addr); memory_info->attributes = 0; if (vma == process->VMManager().vma_map.end()) { memory_info->base_address = 0; memory_info->permission = static_cast(VMAPermission::None); memory_info->size = 0; memory_info->type = static_cast(MemoryState::Unmapped); } else { memory_info->base_address = vma->second.base; memory_info->permission = static_cast(vma->second.permissions); memory_info->size = vma->second.size; memory_info->type = static_cast(vma->second.meminfo_state); } LOG_TRACE(Kernel_SVC, "called process=0x{:08X} addr={:X}", process_handle, addr); return RESULT_SUCCESS; } /// Query memory static ResultCode QueryMemory(MemoryInfo* memory_info, PageInfo* page_info, VAddr addr) { LOG_TRACE(Kernel_SVC, "called, addr={:X}", addr); return QueryProcessMemory(memory_info, page_info, CurrentProcess, addr); } /// Exits the current process static void ExitProcess() { auto* current_process = Core::CurrentProcess(); LOG_INFO(Kernel_SVC, "Process {} exiting", current_process->GetProcessID()); ASSERT_MSG(current_process->GetStatus() == ProcessStatus::Running, "Process has already exited"); current_process->PrepareForTermination(); // Kill the current thread GetCurrentThread()->Stop(); Core::System::GetInstance().PrepareReschedule(); } /// Creates a new thread static ResultCode CreateThread(Handle* out_handle, VAddr entry_point, u64 arg, VAddr stack_top, u32 priority, s32 processor_id) { if (priority > THREADPRIO_LOWEST) { return ERR_INVALID_THREAD_PRIORITY; } auto* const current_process = Core::CurrentProcess(); const ResourceLimit& resource_limit = current_process->GetResourceLimit(); if (resource_limit.GetMaxResourceValue(ResourceType::Priority) > priority) { return ERR_INVALID_THREAD_PRIORITY; } if (processor_id == THREADPROCESSORID_DEFAULT) { // Set the target CPU to the one specified in the process' exheader. processor_id = current_process->GetDefaultProcessorID(); ASSERT(processor_id != THREADPROCESSORID_DEFAULT); } switch (processor_id) { case THREADPROCESSORID_0: case THREADPROCESSORID_1: case THREADPROCESSORID_2: case THREADPROCESSORID_3: break; default: LOG_ERROR(Kernel_SVC, "Invalid thread processor ID: {}", processor_id); return ERR_INVALID_PROCESSOR_ID; } const std::string name = fmt::format("thread-{:X}", entry_point); auto& kernel = Core::System::GetInstance().Kernel(); CASCADE_RESULT(SharedPtr thread, Thread::Create(kernel, name, entry_point, priority, arg, processor_id, stack_top, *current_process)); const auto new_guest_handle = current_process->GetHandleTable().Create(thread); if (new_guest_handle.Failed()) { return new_guest_handle.Code(); } thread->SetGuestHandle(*new_guest_handle); *out_handle = *new_guest_handle; Core::System::GetInstance().CpuCore(thread->GetProcessorID()).PrepareReschedule(); LOG_TRACE(Kernel_SVC, "called entrypoint=0x{:08X} ({}), arg=0x{:08X}, stacktop=0x{:08X}, " "threadpriority=0x{:08X}, processorid=0x{:08X} : created handle=0x{:08X}", entry_point, name, arg, stack_top, priority, processor_id, *out_handle); return RESULT_SUCCESS; } /// Starts the thread for the provided handle static ResultCode StartThread(Handle thread_handle) { LOG_TRACE(Kernel_SVC, "called thread=0x{:08X}", thread_handle); const auto& handle_table = Core::CurrentProcess()->GetHandleTable(); const SharedPtr thread = handle_table.Get(thread_handle); if (!thread) { return ERR_INVALID_HANDLE; } ASSERT(thread->GetStatus() == ThreadStatus::Dormant); thread->ResumeFromWait(); Core::System::GetInstance().CpuCore(thread->GetProcessorID()).PrepareReschedule(); return RESULT_SUCCESS; } /// Called when a thread exits static void ExitThread() { LOG_TRACE(Kernel_SVC, "called, pc=0x{:08X}", Core::CurrentArmInterface().GetPC()); ExitCurrentThread(); Core::System::GetInstance().PrepareReschedule(); } /// Sleep the current thread static void SleepThread(s64 nanoseconds) { LOG_TRACE(Kernel_SVC, "called nanoseconds={}", nanoseconds); // Don't attempt to yield execution if there are no available threads to run, // this way we avoid a useless reschedule to the idle thread. if (nanoseconds == 0 && !Core::System::GetInstance().CurrentScheduler().HaveReadyThreads()) return; // Sleep current thread and check for next thread to schedule WaitCurrentThread_Sleep(); // Create an event to wake the thread up after the specified nanosecond delay has passed GetCurrentThread()->WakeAfterDelay(nanoseconds); Core::System::GetInstance().PrepareReschedule(); } /// Wait process wide key atomic static ResultCode WaitProcessWideKeyAtomic(VAddr mutex_addr, VAddr condition_variable_addr, Handle thread_handle, s64 nano_seconds) { LOG_TRACE( Kernel_SVC, "called mutex_addr={:X}, condition_variable_addr={:X}, thread_handle=0x{:08X}, timeout={}", mutex_addr, condition_variable_addr, thread_handle, nano_seconds); const auto& handle_table = Core::CurrentProcess()->GetHandleTable(); SharedPtr thread = handle_table.Get(thread_handle); ASSERT(thread); CASCADE_CODE(Mutex::Release(mutex_addr)); SharedPtr current_thread = GetCurrentThread(); current_thread->SetCondVarWaitAddress(condition_variable_addr); current_thread->SetMutexWaitAddress(mutex_addr); current_thread->SetWaitHandle(thread_handle); current_thread->SetStatus(ThreadStatus::WaitMutex); current_thread->InvalidateWakeupCallback(); current_thread->WakeAfterDelay(nano_seconds); // Note: Deliberately don't attempt to inherit the lock owner's priority. Core::System::GetInstance().CpuCore(current_thread->GetProcessorID()).PrepareReschedule(); return RESULT_SUCCESS; } /// Signal process wide key static ResultCode SignalProcessWideKey(VAddr condition_variable_addr, s32 target) { LOG_TRACE(Kernel_SVC, "called, condition_variable_addr=0x{:X}, target=0x{:08X}", condition_variable_addr, target); const auto RetrieveWaitingThreads = [](std::size_t core_index, std::vector>& waiting_threads, VAddr condvar_addr) { const auto& scheduler = Core::System::GetInstance().Scheduler(core_index); const auto& thread_list = scheduler.GetThreadList(); for (const auto& thread : thread_list) { if (thread->GetCondVarWaitAddress() == condvar_addr) waiting_threads.push_back(thread); } }; // Retrieve a list of all threads that are waiting for this condition variable. std::vector> waiting_threads; RetrieveWaitingThreads(0, waiting_threads, condition_variable_addr); RetrieveWaitingThreads(1, waiting_threads, condition_variable_addr); RetrieveWaitingThreads(2, waiting_threads, condition_variable_addr); RetrieveWaitingThreads(3, waiting_threads, condition_variable_addr); // Sort them by priority, such that the highest priority ones come first. std::sort(waiting_threads.begin(), waiting_threads.end(), [](const SharedPtr& lhs, const SharedPtr& rhs) { return lhs->GetPriority() < rhs->GetPriority(); }); // Only process up to 'target' threads, unless 'target' is -1, in which case process // them all. std::size_t last = waiting_threads.size(); if (target != -1) last = target; // If there are no threads waiting on this condition variable, just exit if (last > waiting_threads.size()) return RESULT_SUCCESS; for (std::size_t index = 0; index < last; ++index) { auto& thread = waiting_threads[index]; ASSERT(thread->GetCondVarWaitAddress() == condition_variable_addr); std::size_t current_core = Core::System::GetInstance().CurrentCoreIndex(); auto& monitor = Core::System::GetInstance().Monitor(); // Atomically read the value of the mutex. u32 mutex_val = 0; do { monitor.SetExclusive(current_core, thread->GetMutexWaitAddress()); // If the mutex is not yet acquired, acquire it. mutex_val = Memory::Read32(thread->GetMutexWaitAddress()); if (mutex_val != 0) { monitor.ClearExclusive(); break; } } while (!monitor.ExclusiveWrite32(current_core, thread->GetMutexWaitAddress(), thread->GetWaitHandle())); if (mutex_val == 0) { // We were able to acquire the mutex, resume this thread. ASSERT(thread->GetStatus() == ThreadStatus::WaitMutex); thread->ResumeFromWait(); auto* const lock_owner = thread->GetLockOwner(); if (lock_owner != nullptr) { lock_owner->RemoveMutexWaiter(thread); } thread->SetLockOwner(nullptr); thread->SetMutexWaitAddress(0); thread->SetCondVarWaitAddress(0); thread->SetWaitHandle(0); } else { // Atomically signal that the mutex now has a waiting thread. do { monitor.SetExclusive(current_core, thread->GetMutexWaitAddress()); // Ensure that the mutex value is still what we expect. u32 value = Memory::Read32(thread->GetMutexWaitAddress()); // TODO(Subv): When this happens, the kernel just clears the exclusive state and // retries the initial read for this thread. ASSERT_MSG(mutex_val == value, "Unhandled synchronization primitive case"); } while (!monitor.ExclusiveWrite32(current_core, thread->GetMutexWaitAddress(), mutex_val | Mutex::MutexHasWaitersFlag)); // The mutex is already owned by some other thread, make this thread wait on it. const Handle owner_handle = static_cast(mutex_val & Mutex::MutexOwnerMask); const auto& handle_table = Core::CurrentProcess()->GetHandleTable(); auto owner = handle_table.Get(owner_handle); ASSERT(owner); ASSERT(thread->GetStatus() == ThreadStatus::WaitMutex); thread->InvalidateWakeupCallback(); owner->AddMutexWaiter(thread); Core::System::GetInstance().CpuCore(thread->GetProcessorID()).PrepareReschedule(); } } return RESULT_SUCCESS; } // Wait for an address (via Address Arbiter) static ResultCode WaitForAddress(VAddr address, u32 type, s32 value, s64 timeout) { LOG_WARNING(Kernel_SVC, "called, address=0x{:X}, type=0x{:X}, value=0x{:X}, timeout={}", address, type, value, timeout); // If the passed address is a kernel virtual address, return invalid memory state. if (Memory::IsKernelVirtualAddress(address)) { return ERR_INVALID_ADDRESS_STATE; } // If the address is not properly aligned to 4 bytes, return invalid address. if (address % sizeof(u32) != 0) { return ERR_INVALID_ADDRESS; } switch (static_cast(type)) { case AddressArbiter::ArbitrationType::WaitIfLessThan: return AddressArbiter::WaitForAddressIfLessThan(address, value, timeout, false); case AddressArbiter::ArbitrationType::DecrementAndWaitIfLessThan: return AddressArbiter::WaitForAddressIfLessThan(address, value, timeout, true); case AddressArbiter::ArbitrationType::WaitIfEqual: return AddressArbiter::WaitForAddressIfEqual(address, value, timeout); default: return ERR_INVALID_ENUM_VALUE; } } // Signals to an address (via Address Arbiter) static ResultCode SignalToAddress(VAddr address, u32 type, s32 value, s32 num_to_wake) { LOG_WARNING(Kernel_SVC, "called, address=0x{:X}, type=0x{:X}, value=0x{:X}, num_to_wake=0x{:X}", address, type, value, num_to_wake); // If the passed address is a kernel virtual address, return invalid memory state. if (Memory::IsKernelVirtualAddress(address)) { return ERR_INVALID_ADDRESS_STATE; } // If the address is not properly aligned to 4 bytes, return invalid address. if (address % sizeof(u32) != 0) { return ERR_INVALID_ADDRESS; } switch (static_cast(type)) { case AddressArbiter::SignalType::Signal: return AddressArbiter::SignalToAddress(address, num_to_wake); case AddressArbiter::SignalType::IncrementAndSignalIfEqual: return AddressArbiter::IncrementAndSignalToAddressIfEqual(address, value, num_to_wake); case AddressArbiter::SignalType::ModifyByWaitingCountAndSignalIfEqual: return AddressArbiter::ModifyByWaitingCountAndSignalToAddressIfEqual(address, value, num_to_wake); default: return ERR_INVALID_ENUM_VALUE; } } /// This returns the total CPU ticks elapsed since the CPU was powered-on static u64 GetSystemTick() { const u64 result{CoreTiming::GetTicks()}; // Advance time to defeat dumb games that busy-wait for the frame to end. CoreTiming::AddTicks(400); return result; } /// Close a handle static ResultCode CloseHandle(Handle handle) { LOG_TRACE(Kernel_SVC, "Closing handle 0x{:08X}", handle); auto& handle_table = Core::CurrentProcess()->GetHandleTable(); return handle_table.Close(handle); } /// Reset an event static ResultCode ResetSignal(Handle handle) { LOG_DEBUG(Kernel_SVC, "called handle 0x{:08X}", handle); const auto& handle_table = Core::CurrentProcess()->GetHandleTable(); auto event = handle_table.Get(handle); ASSERT(event != nullptr); event->Clear(); return RESULT_SUCCESS; } /// Creates a TransferMemory object static ResultCode CreateTransferMemory(Handle* handle, VAddr addr, u64 size, u32 permissions) { LOG_WARNING(Kernel_SVC, "(STUBBED) called addr=0x{:X}, size=0x{:X}, perms=0x{:08X}", addr, size, permissions); *handle = 0; return RESULT_SUCCESS; } static ResultCode GetThreadCoreMask(Handle thread_handle, u32* core, u64* mask) { LOG_TRACE(Kernel_SVC, "called, handle=0x{:08X}", thread_handle); const auto& handle_table = Core::CurrentProcess()->GetHandleTable(); const SharedPtr thread = handle_table.Get(thread_handle); if (!thread) { return ERR_INVALID_HANDLE; } *core = thread->GetIdealCore(); *mask = thread->GetAffinityMask(); return RESULT_SUCCESS; } static ResultCode SetThreadCoreMask(Handle thread_handle, u32 core, u64 mask) { LOG_DEBUG(Kernel_SVC, "called, handle=0x{:08X}, mask=0x{:16X}, core=0x{:X}", thread_handle, mask, core); const auto& handle_table = Core::CurrentProcess()->GetHandleTable(); const SharedPtr thread = handle_table.Get(thread_handle); if (!thread) { return ERR_INVALID_HANDLE; } if (core == static_cast(THREADPROCESSORID_DEFAULT)) { const u8 default_processor_id = thread->GetOwnerProcess()->GetDefaultProcessorID(); ASSERT(default_processor_id != static_cast(THREADPROCESSORID_DEFAULT)); // Set the target CPU to the one specified in the process' exheader. core = default_processor_id; mask = 1ULL << core; } if (mask == 0) { return ResultCode(ErrorModule::Kernel, ErrCodes::InvalidCombination); } /// This value is used to only change the affinity mask without changing the current ideal core. static constexpr u32 OnlyChangeMask = static_cast(-3); if (core == OnlyChangeMask) { core = thread->GetIdealCore(); } else if (core >= Core::NUM_CPU_CORES && core != static_cast(-1)) { return ResultCode(ErrorModule::Kernel, ErrCodes::InvalidProcessorId); } // Error out if the input core isn't enabled in the input mask. if (core < Core::NUM_CPU_CORES && (mask & (1ull << core)) == 0) { return ResultCode(ErrorModule::Kernel, ErrCodes::InvalidCombination); } thread->ChangeCore(core, mask); return RESULT_SUCCESS; } static ResultCode CreateSharedMemory(Handle* handle, u64 size, u32 local_permissions, u32 remote_permissions) { LOG_TRACE(Kernel_SVC, "called, size=0x{:X}, localPerms=0x{:08X}, remotePerms=0x{:08X}", size, local_permissions, remote_permissions); // Size must be a multiple of 4KB and be less than or equal to // approx. 8 GB (actually (1GB - 512B) * 8) if (size == 0 || (size & 0xFFFFFFFE00000FFF) != 0) { return ERR_INVALID_SIZE; } const auto local_perms = static_cast(local_permissions); if (local_perms != MemoryPermission::Read && local_perms != MemoryPermission::ReadWrite) { return ERR_INVALID_MEMORY_PERMISSIONS; } const auto remote_perms = static_cast(remote_permissions); if (remote_perms != MemoryPermission::Read && remote_perms != MemoryPermission::ReadWrite && remote_perms != MemoryPermission::DontCare) { return ERR_INVALID_MEMORY_PERMISSIONS; } auto& kernel = Core::System::GetInstance().Kernel(); auto& handle_table = Core::CurrentProcess()->GetHandleTable(); auto shared_mem_handle = SharedMemory::Create(kernel, handle_table.Get(KernelHandle::CurrentProcess), size, local_perms, remote_perms); CASCADE_RESULT(*handle, handle_table.Create(shared_mem_handle)); return RESULT_SUCCESS; } static ResultCode ClearEvent(Handle handle) { LOG_TRACE(Kernel_SVC, "called, event=0x{:08X}", handle); const auto& handle_table = Core::CurrentProcess()->GetHandleTable(); SharedPtr evt = handle_table.Get(handle); if (evt == nullptr) { return ERR_INVALID_HANDLE; } evt->Clear(); return RESULT_SUCCESS; } static ResultCode GetProcessInfo(u64* out, Handle process_handle, u32 type) { LOG_DEBUG(Kernel_SVC, "called, handle=0x{:08X}, type=0x{:X}", process_handle, type); // This function currently only allows retrieving a process' status. enum class InfoType { Status, }; const auto& handle_table = Core::CurrentProcess()->GetHandleTable(); const auto process = handle_table.Get(process_handle); if (!process) { return ERR_INVALID_HANDLE; } const auto info_type = static_cast(type); if (info_type != InfoType::Status) { return ERR_INVALID_ENUM_VALUE; } *out = static_cast(process->GetStatus()); return RESULT_SUCCESS; } namespace { struct FunctionDef { using Func = void(); u32 id; Func* func; const char* name; }; } // namespace static const FunctionDef SVC_Table[] = { {0x00, nullptr, "Unknown"}, {0x01, SvcWrap, "SetHeapSize"}, {0x02, nullptr, "SetMemoryPermission"}, {0x03, SvcWrap, "SetMemoryAttribute"}, {0x04, SvcWrap, "MapMemory"}, {0x05, SvcWrap, "UnmapMemory"}, {0x06, SvcWrap, "QueryMemory"}, {0x07, SvcWrap, "ExitProcess"}, {0x08, SvcWrap, "CreateThread"}, {0x09, SvcWrap, "StartThread"}, {0x0A, SvcWrap, "ExitThread"}, {0x0B, SvcWrap, "SleepThread"}, {0x0C, SvcWrap, "GetThreadPriority"}, {0x0D, SvcWrap, "SetThreadPriority"}, {0x0E, SvcWrap, "GetThreadCoreMask"}, {0x0F, SvcWrap, "SetThreadCoreMask"}, {0x10, SvcWrap, "GetCurrentProcessorNumber"}, {0x11, nullptr, "SignalEvent"}, {0x12, SvcWrap, "ClearEvent"}, {0x13, SvcWrap, "MapSharedMemory"}, {0x14, SvcWrap, "UnmapSharedMemory"}, {0x15, SvcWrap, "CreateTransferMemory"}, {0x16, SvcWrap, "CloseHandle"}, {0x17, SvcWrap, "ResetSignal"}, {0x18, SvcWrap, "WaitSynchronization"}, {0x19, SvcWrap, "CancelSynchronization"}, {0x1A, SvcWrap, "ArbitrateLock"}, {0x1B, SvcWrap, "ArbitrateUnlock"}, {0x1C, SvcWrap, "WaitProcessWideKeyAtomic"}, {0x1D, SvcWrap, "SignalProcessWideKey"}, {0x1E, SvcWrap, "GetSystemTick"}, {0x1F, SvcWrap, "ConnectToNamedPort"}, {0x20, nullptr, "SendSyncRequestLight"}, {0x21, SvcWrap, "SendSyncRequest"}, {0x22, nullptr, "SendSyncRequestWithUserBuffer"}, {0x23, nullptr, "SendAsyncRequestWithUserBuffer"}, {0x24, SvcWrap, "GetProcessId"}, {0x25, SvcWrap, "GetThreadId"}, {0x26, SvcWrap, "Break"}, {0x27, SvcWrap, "OutputDebugString"}, {0x28, nullptr, "ReturnFromException"}, {0x29, SvcWrap, "GetInfo"}, {0x2A, nullptr, "FlushEntireDataCache"}, {0x2B, nullptr, "FlushDataCache"}, {0x2C, nullptr, "MapPhysicalMemory"}, {0x2D, nullptr, "UnmapPhysicalMemory"}, {0x2E, nullptr, "GetFutureThreadInfo"}, {0x2F, nullptr, "GetLastThreadInfo"}, {0x30, nullptr, "GetResourceLimitLimitValue"}, {0x31, nullptr, "GetResourceLimitCurrentValue"}, {0x32, SvcWrap, "SetThreadActivity"}, {0x33, SvcWrap, "GetThreadContext"}, {0x34, SvcWrap, "WaitForAddress"}, {0x35, SvcWrap, "SignalToAddress"}, {0x36, nullptr, "Unknown"}, {0x37, nullptr, "Unknown"}, {0x38, nullptr, "Unknown"}, {0x39, nullptr, "Unknown"}, {0x3A, nullptr, "Unknown"}, {0x3B, nullptr, "Unknown"}, {0x3C, nullptr, "DumpInfo"}, {0x3D, nullptr, "DumpInfoNew"}, {0x3E, nullptr, "Unknown"}, {0x3F, nullptr, "Unknown"}, {0x40, nullptr, "CreateSession"}, {0x41, nullptr, "AcceptSession"}, {0x42, nullptr, "ReplyAndReceiveLight"}, {0x43, nullptr, "ReplyAndReceive"}, {0x44, nullptr, "ReplyAndReceiveWithUserBuffer"}, {0x45, nullptr, "CreateEvent"}, {0x46, nullptr, "Unknown"}, {0x47, nullptr, "Unknown"}, {0x48, nullptr, "MapPhysicalMemoryUnsafe"}, {0x49, nullptr, "UnmapPhysicalMemoryUnsafe"}, {0x4A, nullptr, "SetUnsafeLimit"}, {0x4B, nullptr, "CreateCodeMemory"}, {0x4C, nullptr, "ControlCodeMemory"}, {0x4D, nullptr, "SleepSystem"}, {0x4E, nullptr, "ReadWriteRegister"}, {0x4F, nullptr, "SetProcessActivity"}, {0x50, SvcWrap, "CreateSharedMemory"}, {0x51, nullptr, "MapTransferMemory"}, {0x52, nullptr, "UnmapTransferMemory"}, {0x53, nullptr, "CreateInterruptEvent"}, {0x54, nullptr, "QueryPhysicalAddress"}, {0x55, nullptr, "QueryIoMapping"}, {0x56, nullptr, "CreateDeviceAddressSpace"}, {0x57, nullptr, "AttachDeviceAddressSpace"}, {0x58, nullptr, "DetachDeviceAddressSpace"}, {0x59, nullptr, "MapDeviceAddressSpaceByForce"}, {0x5A, nullptr, "MapDeviceAddressSpaceAligned"}, {0x5B, nullptr, "MapDeviceAddressSpace"}, {0x5C, nullptr, "UnmapDeviceAddressSpace"}, {0x5D, nullptr, "InvalidateProcessDataCache"}, {0x5E, nullptr, "StoreProcessDataCache"}, {0x5F, nullptr, "FlushProcessDataCache"}, {0x60, nullptr, "DebugActiveProcess"}, {0x61, nullptr, "BreakDebugProcess"}, {0x62, nullptr, "TerminateDebugProcess"}, {0x63, nullptr, "GetDebugEvent"}, {0x64, nullptr, "ContinueDebugEvent"}, {0x65, nullptr, "GetProcessList"}, {0x66, nullptr, "GetThreadList"}, {0x67, nullptr, "GetDebugThreadContext"}, {0x68, nullptr, "SetDebugThreadContext"}, {0x69, nullptr, "QueryDebugProcessMemory"}, {0x6A, nullptr, "ReadDebugProcessMemory"}, {0x6B, nullptr, "WriteDebugProcessMemory"}, {0x6C, nullptr, "SetHardwareBreakPoint"}, {0x6D, nullptr, "GetDebugThreadParam"}, {0x6E, nullptr, "Unknown"}, {0x6F, nullptr, "GetSystemInfo"}, {0x70, nullptr, "CreatePort"}, {0x71, nullptr, "ManageNamedPort"}, {0x72, nullptr, "ConnectToPort"}, {0x73, nullptr, "SetProcessMemoryPermission"}, {0x74, nullptr, "MapProcessMemory"}, {0x75, nullptr, "UnmapProcessMemory"}, {0x76, nullptr, "QueryProcessMemory"}, {0x77, nullptr, "MapProcessCodeMemory"}, {0x78, nullptr, "UnmapProcessCodeMemory"}, {0x79, nullptr, "CreateProcess"}, {0x7A, nullptr, "StartProcess"}, {0x7B, nullptr, "TerminateProcess"}, {0x7C, SvcWrap, "GetProcessInfo"}, {0x7D, nullptr, "CreateResourceLimit"}, {0x7E, nullptr, "SetResourceLimitLimitValue"}, {0x7F, nullptr, "CallSecureMonitor"}, }; static const FunctionDef* GetSVCInfo(u32 func_num) { if (func_num >= std::size(SVC_Table)) { LOG_ERROR(Kernel_SVC, "Unknown svc=0x{:02X}", func_num); return nullptr; } return &SVC_Table[func_num]; } MICROPROFILE_DEFINE(Kernel_SVC, "Kernel", "SVC", MP_RGB(70, 200, 70)); void CallSVC(u32 immediate) { MICROPROFILE_SCOPE(Kernel_SVC); // Lock the global kernel mutex when we enter the kernel HLE. std::lock_guard lock(HLE::g_hle_lock); const FunctionDef* info = GetSVCInfo(immediate); if (info) { if (info->func) { info->func(); } else { LOG_CRITICAL(Kernel_SVC, "Unimplemented SVC function {}(..)", info->name); } } else { LOG_CRITICAL(Kernel_SVC, "Unknown SVC function 0x{:X}", immediate); } } } // namespace Kernel