Implements the common usages for VMNMX. Inputs with a different size
than 32 bits are not supported and sign mismatches aren't supported
either.
VMNMX works as follows:
It grabs Ra and Rb and applies a maximum/minimum on them (this is
defined by .MX), having in mind the input sign. This result can then be
saturated. After the intermediate result is calculated, it applies
another operation on it using Rc. These operations are merges,
accumulations or another min/max pass.
This instruction allows to implement with a more flexible approach GCN's
min3 and max3 instructions (for instance).
Using the same technique we used for u8 on LDG, implement u16.
In the case of STG, load memory and insert the value we want to set
into it with bitfieldInsert. Then set that value.
This commit introduces a mechanism by which shader IR code can be
amended and extended. This useful for track algorithms where certain
information can derived from before the track such as indexes to array
samplers.
Originally on the last commit I thought TLD4 acted the same as TLD4S and
didn't have a mask. It actually does have a component mask. This commit
corrects that.
This commit fixes an issue where not all 4 results of tld4 were being
written, the color component was defaulted to red, among other things.
It also implements the bindless variant.
Bindless textures were using u64 to pack the buffer and offset from
where they come from. Drop this in favor of separated entries in the
struct.
Remove the usage of std::set in favor of std::list (it's not std::vector
to avoid reference invalidations) for samplers and images.
TLD4S always outputs 4 values, the previous code checked a component
mask and omitted those values that weren't part of it. This commit
corrects that and makes sure all 4 values are set.
Ignore global memory operations instead of invoking undefined behaviour
when constant buffer tracking fails and we are blasting through asserts,
ignore the operation.
In the case of LDG this means filling the destination registers with
zeroes; for STG this means ignore the instruction as a whole.
The default behaviour is still to abort execution on failure.
In the process remove implementation of SUATOM.MIN and SUATOM.MAX as
these require a distinction between U32 and S32. These have to be
implemented with imageCompSwap loop.
Implement VOTE using Nvidia's intrinsics. Documentation about these can
be found here
https://developer.nvidia.com/reading-between-threads-shader-intrinsics
Instead of using portable ARB instructions I opted to use Nvidia
intrinsics because these are the closest we have to how Tegra X1
hardware renders.
To stub VOTE on non-Nvidia drivers (including nouveau) this commit
simulates a GPU with a warp size of one, returning what is meaningful
for the instruction being emulated:
* anyThreadNV(value) -> value
* allThreadsNV(value) -> value
* allThreadsEqualNV(value) -> true
ballotARB, also known as "uint64_t(activeThreadsNV())", emits
VOTE.ANY Rd, PT, PT;
on nouveau's compiler. This doesn't match exactly to Nvidia's code
VOTE.ALL Rd, PT, PT;
Which is emulated with activeThreadsNV() by this commit. In theory this
shouldn't really matter since .ANY, .ALL and .EQ affect the predicates
(set to PT on those cases) and not the registers.
While changing this code, simplify tracking code to allow returning
the base address node, this way callers don't have to manually rebuild
it on each invocation.