suyu/src/core/hle/result.h

375 lines
12 KiB
C++
Raw Normal View History

// Copyright 2014 Citra Emulator Project
2014-12-17 00:38:14 -05:00
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
2015-05-06 03:06:12 -04:00
#include "common/assert.h"
#include "common/bit_field.h"
#include "common/common_types.h"
#include "common/expected.h"
// All the constants in this file come from http://switchbrew.org/index.php?title=Error_codes
/**
* Identifies the module which caused the error. Error codes can be propagated through a call
* chain, meaning that this doesn't always correspond to the module where the API call made is
* contained.
*/
enum class ErrorModule : u32 {
Common = 0,
Kernel = 1,
FS = 2,
2018-05-23 08:22:42 -04:00
OS = 3, // used for Memory, Thread, Mutex, Nvidia
HTCS = 4,
NCM = 5,
DD = 6,
LR = 8,
Loader = 9,
CMIF = 10,
HIPC = 11,
PM = 15,
NS = 16,
HTC = 18,
NCMContent = 20,
SM = 21,
RO = 22,
SDMMC = 24,
OVLN = 25,
SPL = 26,
ETHC = 100,
I2C = 101,
GPIO = 102,
UART = 103,
Settings = 105,
WLAN = 107,
XCD = 108,
NIFM = 110,
Hwopus = 111,
Bluetooth = 113,
VI = 114,
NFP = 115,
Time = 116,
FGM = 117,
2018-05-23 08:22:42 -04:00
OE = 118,
PCIe = 120,
Friends = 121,
BCAT = 122,
SSLSrv = 123,
Account = 124,
News = 125,
Mii = 126,
NFC = 127,
AM = 128,
PlayReport = 129,
AHID = 130,
Qlaunch = 132,
PCV = 133,
OMM = 134,
BPC = 135,
PSM = 136,
NIM = 137,
PSC = 138,
TC = 139,
USB = 140,
NSD = 141,
PCTL = 142,
BTM = 143,
ETicket = 145,
NGC = 146,
ERPT = 147,
APM = 148,
2018-05-23 08:22:42 -04:00
Profiler = 150,
ErrorUpload = 151,
Audio = 153,
NPNS = 154,
NPNSHTTPSTREAM = 155,
ARP = 157,
2018-05-23 08:22:42 -04:00
SWKBD = 158,
BOOT = 159,
NFCMifare = 161,
UserlandAssert = 162,
Fatal = 163,
NIMShop = 164,
SPSM = 165,
BGTC = 167,
UserlandCrash = 168,
SREPO = 180,
2018-05-23 08:22:42 -04:00
Dauth = 181,
HID = 202,
LDN = 203,
Irsensor = 205,
Capture = 206,
Manu = 208,
2018-05-23 08:22:42 -04:00
ATK = 209,
GRC = 212,
Migration = 216,
MigrationLdcServ = 217,
GeneralWebApplet = 800,
WifiWebAuthApplet = 809,
WhitelistedApplet = 810,
ShopN = 811,
};
/// Encapsulates a Horizon OS error code, allowing it to be separated into its constituent fields.
union ResultCode {
u32 raw;
BitField<0, 9, ErrorModule> module;
BitField<9, 13, u32> description;
constexpr explicit ResultCode(u32 raw_) : raw(raw_) {}
constexpr ResultCode(ErrorModule module_, u32 description_)
: raw(module.FormatValue(module_) | description.FormatValue(description_)) {}
[[nodiscard]] constexpr bool IsSuccess() const {
return raw == 0;
}
[[nodiscard]] constexpr bool IsError() const {
return !IsSuccess();
}
};
[[nodiscard]] constexpr bool operator==(const ResultCode& a, const ResultCode& b) {
return a.raw == b.raw;
}
[[nodiscard]] constexpr bool operator!=(const ResultCode& a, const ResultCode& b) {
return !operator==(a, b);
}
// Convenience functions for creating some common kinds of errors:
/// The default success `ResultCode`.
constexpr ResultCode ResultSuccess(0);
/**
* Placeholder result code used for unknown error codes.
*
* @note This should only be used when a particular error code
* is not known yet.
*/
constexpr ResultCode ResultUnknown(UINT32_MAX);
/**
* A ResultRange defines an inclusive range of error descriptions within an error module.
* This can be used to check whether the description of a given ResultCode falls within the range.
* The conversion function returns a ResultCode with its description set to description_start.
*
* An example of how it could be used:
* \code
* constexpr ResultRange ResultCommonError{ErrorModule::Common, 0, 9999};
*
* ResultCode Example(int value) {
* const ResultCode result = OtherExample(value);
*
* // This will only evaluate to true if result.module is ErrorModule::Common and
* // result.description is in between 0 and 9999 inclusive.
* if (ResultCommonError.Includes(result)) {
* // This returns ResultCode{ErrorModule::Common, 0};
* return ResultCommonError;
* }
*
* return ResultSuccess;
* }
* \endcode
*/
class ResultRange {
public:
consteval ResultRange(ErrorModule module, u32 description_start, u32 description_end_)
: code{module, description_start}, description_end{description_end_} {}
[[nodiscard]] constexpr operator ResultCode() const {
return code;
}
[[nodiscard]] constexpr bool Includes(ResultCode other) const {
return code.module == other.module && code.description <= other.description &&
other.description <= description_end;
}
private:
ResultCode code;
u32 description_end;
};
/**
* This is an optional value type. It holds a `ResultCode` and, if that code is ResultSuccess, it
* also holds a result of type `T`. If the code is an error code (not ResultSuccess), then trying
* to access the inner value with operator* is undefined behavior and will assert with Unwrap().
* Users of this class must be cognizant to check the status of the ResultVal with operator bool(),
* Code(), Succeeded() or Failed() prior to accessing the inner value.
*
* An example of how it could be used:
* \code
* ResultVal<int> Frobnicate(float strength) {
* if (strength < 0.f || strength > 1.0f) {
* // Can't frobnicate too weakly or too strongly
* return ResultCode{ErrorModule::Common, 1};
* } else {
* // Frobnicated! Give caller a cookie
* return 42;
* }
* }
* \endcode
*
* \code
* auto frob_result = Frobnicate(0.75f);
* if (frob_result) {
* // Frobbed ok
* printf("My cookie is %d\n", *frob_result);
* } else {
* printf("Guess I overdid it. :( Error code: %ux\n", frob_result.Code().raw);
* }
* \endcode
*/
template <typename T>
class ResultVal {
public:
constexpr ResultVal() : expected{} {}
constexpr ResultVal(ResultCode code) : expected{Common::Unexpected(code)} {}
constexpr ResultVal(ResultRange range) : expected{Common::Unexpected(range)} {}
template <typename U>
constexpr ResultVal(U&& val) : expected{std::forward<U>(val)} {}
template <typename... Args>
constexpr ResultVal(Args&&... args) : expected{std::in_place, std::forward<Args>(args)...} {}
~ResultVal() = default;
constexpr ResultVal(const ResultVal&) = default;
constexpr ResultVal(ResultVal&&) = default;
ResultVal& operator=(const ResultVal&) = default;
ResultVal& operator=(ResultVal&&) = default;
[[nodiscard]] constexpr explicit operator bool() const noexcept {
return expected.has_value();
}
[[nodiscard]] constexpr ResultCode Code() const {
return expected.has_value() ? ResultSuccess : expected.error();
}
[[nodiscard]] constexpr bool Succeeded() const {
return expected.has_value();
}
[[nodiscard]] constexpr bool Failed() const {
return !expected.has_value();
}
[[nodiscard]] constexpr T* operator->() {
return std::addressof(expected.value());
}
[[nodiscard]] constexpr const T* operator->() const {
return std::addressof(expected.value());
}
[[nodiscard]] constexpr T& operator*() & {
return *expected;
}
[[nodiscard]] constexpr const T& operator*() const& {
return *expected;
}
[[nodiscard]] constexpr T&& operator*() && {
return *expected;
}
[[nodiscard]] constexpr const T&& operator*() const&& {
return *expected;
}
[[nodiscard]] constexpr T& Unwrap() & {
ASSERT_MSG(Succeeded(), "Tried to Unwrap empty ResultVal");
return expected.value();
}
[[nodiscard]] constexpr const T& Unwrap() const& {
ASSERT_MSG(Succeeded(), "Tried to Unwrap empty ResultVal");
return expected.value();
}
[[nodiscard]] constexpr T&& Unwrap() && {
ASSERT_MSG(Succeeded(), "Tried to Unwrap empty ResultVal");
return std::move(expected.value());
}
[[nodiscard]] constexpr const T&& Unwrap() const&& {
ASSERT_MSG(Succeeded(), "Tried to Unwrap empty ResultVal");
return std::move(expected.value());
}
template <typename U>
[[nodiscard]] constexpr T ValueOr(U&& v) const& {
return expected.value_or(v);
}
template <typename U>
[[nodiscard]] constexpr T ValueOr(U&& v) && {
return expected.value_or(v);
}
private:
// TODO (Morph): Replace this with C++23 std::expected.
Common::Expected<T, ResultCode> expected;
};
/**
* Check for the success of `source` (which must evaluate to a ResultVal). If it succeeds, unwraps
* the contained value and assigns it to `target`, which can be either an l-value expression or a
* variable declaration. If it fails the return code is returned from the current function. Thus it
* can be used to cascade errors out, achieving something akin to exception handling.
*/
#define CASCADE_RESULT(target, source) \
auto CONCAT2(check_result_L, __LINE__) = source; \
if (CONCAT2(check_result_L, __LINE__).Failed()) { \
return CONCAT2(check_result_L, __LINE__).Code(); \
} \
target = std::move(*CONCAT2(check_result_L, __LINE__))
/**
* Analogous to CASCADE_RESULT, but for a bare ResultCode. The code will be propagated if
* non-success, or discarded otherwise.
*/
#define CASCADE_CODE(source) \
do { \
auto CONCAT2(check_result_L, __LINE__) = source; \
if (CONCAT2(check_result_L, __LINE__).IsError()) { \
return CONCAT2(check_result_L, __LINE__); \
} \
} while (false)
#define R_SUCCEEDED(res) (res.IsSuccess())
/// Evaluates a boolean expression, and succeeds if that expression is true.
#define R_SUCCEED_IF(expr) R_UNLESS(!(expr), ResultSuccess)
/// Evaluates a boolean expression, and returns a result unless that expression is true.
#define R_UNLESS(expr, res) \
{ \
if (!(expr)) { \
if (res.IsError()) { \
LOG_ERROR(Kernel, "Failed with result: {}", res.raw); \
} \
return res; \
} \
}
/// Evaluates an expression that returns a result, and returns the result if it would fail.
#define R_TRY(res_expr) \
{ \
const auto _tmp_r_try_rc = (res_expr); \
if (_tmp_r_try_rc.IsError()) { \
return _tmp_r_try_rc; \
} \
}