suyu/src/core/hle/kernel/process.cpp

327 lines
11 KiB
C++
Raw Normal View History

// Copyright 2015 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
2018-01-01 14:38:34 -05:00
#include <algorithm>
#include <memory>
#include "common/assert.h"
#include "common/common_funcs.h"
#include "common/logging/log.h"
#include "core/hle/kernel/errors.h"
#include "core/hle/kernel/memory.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/resource_limit.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/kernel/vm_manager.h"
#include "core/memory.h"
namespace Kernel {
2018-01-01 14:38:34 -05:00
// Lists all processes that exist in the current session.
static std::vector<SharedPtr<Process>> process_list;
SharedPtr<CodeSet> CodeSet::Create(std::string name) {
SharedPtr<CodeSet> codeset(new CodeSet);
codeset->name = std::move(name);
return codeset;
}
CodeSet::CodeSet() {}
CodeSet::~CodeSet() {}
u32 Process::next_process_id;
SharedPtr<Process> Process::Create(std::string&& name) {
SharedPtr<Process> process(new Process);
process->name = std::move(name);
process->flags.raw = 0;
process->flags.memory_region.Assign(MemoryRegion::APPLICATION);
2018-01-01 14:38:34 -05:00
process->status = ProcessStatus::Created;
process->program_id = 0;
2018-01-01 14:38:34 -05:00
process_list.push_back(process);
return process;
}
void Process::ParseKernelCaps(const u32* kernel_caps, size_t len) {
for (size_t i = 0; i < len; ++i) {
u32 descriptor = kernel_caps[i];
u32 type = descriptor >> 20;
if (descriptor == 0xFFFFFFFF) {
// Unused descriptor entry
continue;
} else if ((type & 0xF00) == 0xE00) { // 0x0FFF
// Allowed interrupts list
NGLOG_WARNING(Loader, "ExHeader allowed interrupts list ignored");
} else if ((type & 0xF80) == 0xF00) { // 0x07FF
// Allowed syscalls mask
unsigned int index = ((descriptor >> 24) & 7) * 24;
u32 bits = descriptor & 0xFFFFFF;
while (bits && index < svc_access_mask.size()) {
svc_access_mask.set(index, bits & 1);
++index;
bits >>= 1;
}
} else if ((type & 0xFF0) == 0xFE0) { // 0x00FF
// Handle table size
handle_table_size = descriptor & 0x3FF;
} else if ((type & 0xFF8) == 0xFF0) { // 0x007F
// Misc. flags
flags.raw = descriptor & 0xFFFF;
} else if ((type & 0xFFE) == 0xFF8) { // 0x001F
// Mapped memory range
if (i + 1 >= len || ((kernel_caps[i + 1] >> 20) & 0xFFE) != 0xFF8) {
NGLOG_WARNING(Loader, "Incomplete exheader memory range descriptor ignored.");
continue;
}
u32 end_desc = kernel_caps[i + 1];
++i; // Skip over the second descriptor on the next iteration
AddressMapping mapping;
mapping.address = descriptor << 12;
VAddr end_address = end_desc << 12;
if (mapping.address < end_address) {
mapping.size = end_address - mapping.address;
} else {
mapping.size = 0;
}
mapping.read_only = (descriptor & (1 << 20)) != 0;
mapping.unk_flag = (end_desc & (1 << 20)) != 0;
address_mappings.push_back(mapping);
} else if ((type & 0xFFF) == 0xFFE) { // 0x000F
// Mapped memory page
AddressMapping mapping;
mapping.address = descriptor << 12;
mapping.size = Memory::PAGE_SIZE;
mapping.read_only = false;
mapping.unk_flag = false;
address_mappings.push_back(mapping);
} else if ((type & 0xFE0) == 0xFC0) { // 0x01FF
// Kernel version
kernel_version = descriptor & 0xFFFF;
int minor = kernel_version & 0xFF;
int major = (kernel_version >> 8) & 0xFF;
NGLOG_INFO(Loader, "ExHeader kernel version: {}.{}", major, minor);
} else {
NGLOG_ERROR(Loader, "Unhandled kernel caps descriptor: 0x{:08X}", descriptor);
}
}
}
void Process::Run(VAddr entry_point, s32 main_thread_priority, u32 stack_size) {
2018-03-10 17:51:23 -05:00
// Allocate and map the main thread stack
// TODO(bunnei): This is heap area that should be allocated by the kernel and not mapped as part
// of the user address space.
vm_manager
2018-03-31 15:03:28 -04:00
.MapMemoryBlock(Memory::STACK_AREA_VADDR_END - stack_size,
std::make_shared<std::vector<u8>>(stack_size, 0), 0, stack_size,
MemoryState::Mapped)
.Unwrap();
misc_memory_used += stack_size;
memory_region->used += stack_size;
// Map special address mappings
MapSharedPages(vm_manager);
for (const auto& mapping : address_mappings) {
HandleSpecialMapping(vm_manager, mapping);
}
vm_manager.LogLayout();
2018-01-01 14:38:34 -05:00
status = ProcessStatus::Running;
Kernel::SetupMainThread(entry_point, main_thread_priority, this);
}
void Process::LoadModule(SharedPtr<CodeSet> module_, VAddr base_addr) {
memory_region = GetMemoryRegion(flags.memory_region);
auto MapSegment = [&](CodeSet::Segment& segment, VMAPermission permissions,
2018-01-01 14:38:34 -05:00
MemoryState memory_state) {
auto vma = vm_manager
2018-01-01 14:38:34 -05:00
.MapMemoryBlock(segment.addr + base_addr, module_->memory, segment.offset,
segment.size, memory_state)
.Unwrap();
vm_manager.Reprotect(vma, permissions);
misc_memory_used += segment.size;
memory_region->used += segment.size;
};
// Map CodeSet segments
MapSegment(module_->code, VMAPermission::ReadExecute, MemoryState::CodeStatic);
MapSegment(module_->rodata, VMAPermission::Read, MemoryState::CodeMutable);
MapSegment(module_->data, VMAPermission::ReadWrite, MemoryState::CodeMutable);
}
VAddr Process::GetLinearHeapAreaAddress() const {
// Starting from system version 8.0.0 a new linear heap layout is supported to allow usage of
// the extra RAM in the n3DS.
return kernel_version < 0x22C ? Memory::LINEAR_HEAP_VADDR : Memory::NEW_LINEAR_HEAP_VADDR;
}
VAddr Process::GetLinearHeapBase() const {
return GetLinearHeapAreaAddress() + memory_region->base;
}
VAddr Process::GetLinearHeapLimit() const {
return GetLinearHeapBase() + memory_region->size;
}
ResultVal<VAddr> Process::HeapAllocate(VAddr target, u64 size, VMAPermission perms) {
if (target < Memory::HEAP_VADDR || target + size > Memory::HEAP_VADDR_END ||
target + size < target) {
return ERR_INVALID_ADDRESS;
}
if (heap_memory == nullptr) {
// Initialize heap
heap_memory = std::make_shared<std::vector<u8>>();
heap_start = heap_end = target;
} else {
vm_manager.UnmapRange(heap_start, heap_end - heap_start);
}
// If necessary, expand backing vector to cover new heap extents.
if (target < heap_start) {
heap_memory->insert(begin(*heap_memory), heap_start - target, 0);
heap_start = target;
vm_manager.RefreshMemoryBlockMappings(heap_memory.get());
}
if (target + size > heap_end) {
heap_memory->insert(end(*heap_memory), (target + size) - heap_end, 0);
heap_end = target + size;
vm_manager.RefreshMemoryBlockMappings(heap_memory.get());
}
ASSERT(heap_end - heap_start == heap_memory->size());
CASCADE_RESULT(auto vma, vm_manager.MapMemoryBlock(target, heap_memory, target - heap_start,
size, MemoryState::Heap));
vm_manager.Reprotect(vma, perms);
heap_used = size;
memory_region->used += size;
return MakeResult<VAddr>(heap_end - size);
}
ResultCode Process::HeapFree(VAddr target, u32 size) {
if (target < Memory::HEAP_VADDR || target + size > Memory::HEAP_VADDR_END ||
target + size < target) {
return ERR_INVALID_ADDRESS;
}
if (size == 0) {
return RESULT_SUCCESS;
}
ResultCode result = vm_manager.UnmapRange(target, size);
if (result.IsError())
return result;
heap_used -= size;
memory_region->used -= size;
return RESULT_SUCCESS;
}
ResultVal<VAddr> Process::LinearAllocate(VAddr target, u32 size, VMAPermission perms) {
UNIMPLEMENTED();
return {};
}
ResultCode Process::LinearFree(VAddr target, u32 size) {
auto& linheap_memory = memory_region->linear_heap_memory;
if (target < GetLinearHeapBase() || target + size > GetLinearHeapLimit() ||
target + size < target) {
return ERR_INVALID_ADDRESS;
}
if (size == 0) {
return RESULT_SUCCESS;
}
VAddr heap_end = GetLinearHeapBase() + (u32)linheap_memory->size();
if (target + size > heap_end) {
return ERR_INVALID_ADDRESS_STATE;
}
ResultCode result = vm_manager.UnmapRange(target, size);
if (result.IsError())
return result;
linear_heap_used -= size;
memory_region->used -= size;
if (target + size == heap_end) {
// End of linear heap has been freed, so check what's the last allocated block in it and
// reduce the size.
auto vma = vm_manager.FindVMA(target);
ASSERT(vma != vm_manager.vma_map.end());
ASSERT(vma->second.type == VMAType::Free);
VAddr new_end = vma->second.base;
if (new_end >= GetLinearHeapBase()) {
linheap_memory->resize(new_end - GetLinearHeapBase());
}
}
return RESULT_SUCCESS;
}
ResultCode Process::MirrorMemory(VAddr dst_addr, VAddr src_addr, u64 size) {
auto vma = vm_manager.FindVMA(src_addr);
ASSERT_MSG(vma != vm_manager.vma_map.end(), "Invalid memory address");
ASSERT_MSG(vma->second.backing_block, "Backing block doesn't exist for address");
// The returned VMA might be a bigger one encompassing the desired address.
auto vma_offset = src_addr - vma->first;
ASSERT_MSG(vma_offset + size <= vma->second.size,
"Shared memory exceeds bounds of mapped block");
const std::shared_ptr<std::vector<u8>>& backing_block = vma->second.backing_block;
size_t backing_block_offset = vma->second.offset + vma_offset;
CASCADE_RESULT(auto new_vma,
vm_manager.MapMemoryBlock(dst_addr, backing_block, backing_block_offset, size,
MemoryState::Mapped));
// Protect mirror with permissions from old region
vm_manager.Reprotect(new_vma, vma->second.permissions);
// Remove permissions from old region
vm_manager.Reprotect(vma, VMAPermission::None);
return RESULT_SUCCESS;
}
2017-12-31 15:22:49 -05:00
ResultCode Process::UnmapMemory(VAddr dst_addr, VAddr /*src_addr*/, u64 size) {
return vm_manager.UnmapRange(dst_addr, size);
}
Kernel::Process::Process() {}
Kernel::Process::~Process() {}
2018-01-01 14:38:34 -05:00
void ClearProcessList() {
process_list.clear();
}
SharedPtr<Process> GetProcessById(u32 process_id) {
auto itr = std::find_if(
process_list.begin(), process_list.end(),
[&](const SharedPtr<Process>& process) { return process->process_id == process_id; });
if (itr == process_list.end())
return nullptr;
return *itr;
}
2018-01-01 14:38:34 -05:00
} // namespace Kernel