suyu/src/core/hle/kernel/k_capabilities.cpp

359 lines
12 KiB
C++
Raw Normal View History

2023-01-28 19:38:00 -05:00
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "core/hardware_properties.h"
#include "core/hle/kernel/k_capabilities.h"
#include "core/hle/kernel/k_memory_layout.h"
#include "core/hle/kernel/k_page_table.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/svc_results.h"
#include "core/hle/kernel/svc_version.h"
namespace Kernel {
2023-03-06 20:34:25 -05:00
Result KCapabilities::InitializeForKip(std::span<const u32> kern_caps, KPageTable* page_table) {
2023-01-28 19:38:00 -05:00
// We're initializing an initial process.
m_svc_access_flags.reset();
m_irq_access_flags.reset();
m_debug_capabilities = 0;
m_handle_table_size = 0;
m_intended_kernel_version = 0;
m_program_type = 0;
// Initial processes may run on all cores.
constexpr u64 VirtMask = Core::Hardware::VirtualCoreMask;
constexpr u64 PhysMask = Core::Hardware::ConvertVirtualCoreMaskToPhysical(VirtMask);
m_core_mask = VirtMask;
m_phys_core_mask = PhysMask;
// Initial processes may use any user priority they like.
m_priority_mask = ~0xFULL;
// Here, Nintendo sets the kernel version to the current kernel version.
// We will follow suit and set the version to the highest supported kernel version.
KernelVersion intended_kernel_version{};
intended_kernel_version.major_version.Assign(Svc::SupportedKernelMajorVersion);
intended_kernel_version.minor_version.Assign(Svc::SupportedKernelMinorVersion);
m_intended_kernel_version = intended_kernel_version.raw;
// Parse the capabilities array.
R_RETURN(this->SetCapabilities(kern_caps, page_table));
}
Result KCapabilities::InitializeForUser(std::span<const u32> user_caps, KPageTable* page_table) {
// We're initializing a user process.
m_svc_access_flags.reset();
m_irq_access_flags.reset();
m_debug_capabilities = 0;
m_handle_table_size = 0;
m_intended_kernel_version = 0;
m_program_type = 0;
// User processes must specify what cores/priorities they can use.
m_core_mask = 0;
m_priority_mask = 0;
// Parse the user capabilities array.
R_RETURN(this->SetCapabilities(user_caps, page_table));
}
Result KCapabilities::SetCorePriorityCapability(const u32 cap) {
// We can't set core/priority if we've already set them.
R_UNLESS(m_core_mask == 0, ResultInvalidArgument);
R_UNLESS(m_priority_mask == 0, ResultInvalidArgument);
// Validate the core/priority.
CorePriority pack{cap};
const u32 min_core = pack.minimum_core_id;
const u32 max_core = pack.maximum_core_id;
const u32 max_prio = pack.lowest_thread_priority;
const u32 min_prio = pack.highest_thread_priority;
R_UNLESS(min_core <= max_core, ResultInvalidCombination);
R_UNLESS(min_prio <= max_prio, ResultInvalidCombination);
R_UNLESS(max_core < Core::Hardware::NumVirtualCores, ResultInvalidCoreId);
ASSERT(max_prio < Common::BitSize<u64>());
// Set core mask.
for (auto core_id = min_core; core_id <= max_core; core_id++) {
m_core_mask |= (1ULL << core_id);
}
ASSERT((m_core_mask & Core::Hardware::VirtualCoreMask) == m_core_mask);
// Set physical core mask.
m_phys_core_mask = Core::Hardware::ConvertVirtualCoreMaskToPhysical(m_core_mask);
// Set priority mask.
for (auto prio = min_prio; prio <= max_prio; prio++) {
m_priority_mask |= (1ULL << prio);
}
// We must have some core/priority we can use.
R_UNLESS(m_core_mask != 0, ResultInvalidArgument);
R_UNLESS(m_priority_mask != 0, ResultInvalidArgument);
// Processes must not have access to kernel thread priorities.
R_UNLESS((m_priority_mask & 0xF) == 0, ResultInvalidArgument);
R_SUCCEED();
}
Result KCapabilities::SetSyscallMaskCapability(const u32 cap, u32& set_svc) {
// Validate the index.
SyscallMask pack{cap};
const u32 mask = pack.mask;
const u32 index = pack.index;
const u32 index_flag = (1U << index);
R_UNLESS((set_svc & index_flag) == 0, ResultInvalidCombination);
set_svc |= index_flag;
// Set SVCs.
for (size_t i = 0; i < decltype(SyscallMask::mask)::bits; i++) {
const u32 svc_id = static_cast<u32>(decltype(SyscallMask::mask)::bits * index + i);
if (mask & (1U << i)) {
R_UNLESS(this->SetSvcAllowed(svc_id), ResultOutOfRange);
}
}
R_SUCCEED();
}
Result KCapabilities::MapRange_(const u32 cap, const u32 size_cap, KPageTable* page_table) {
const auto range_pack = MapRange{cap};
const auto size_pack = MapRangeSize{size_cap};
// Get/validate address/size
const u64 phys_addr = range_pack.address.Value() * PageSize;
// Validate reserved bits are unused.
R_UNLESS(size_pack.reserved.Value() == 0, ResultOutOfRange);
const size_t num_pages = size_pack.pages;
const size_t size = num_pages * PageSize;
R_UNLESS(num_pages != 0, ResultInvalidSize);
R_UNLESS(phys_addr < phys_addr + size, ResultInvalidAddress);
R_UNLESS(((phys_addr + size - 1) & ~PhysicalMapAllowedMask) == 0, ResultInvalidAddress);
// Do the mapping.
[[maybe_unused]] const KMemoryPermission perm = range_pack.read_only.Value()
? KMemoryPermission::UserRead
: KMemoryPermission::UserReadWrite;
if (MapRangeSize{size_cap}.normal) {
// R_RETURN(page_table->MapStatic(phys_addr, size, perm));
} else {
// R_RETURN(page_table->MapIo(phys_addr, size, perm));
}
UNIMPLEMENTED();
R_SUCCEED();
}
Result KCapabilities::MapIoPage_(const u32 cap, KPageTable* page_table) {
// Get/validate address/size
const u64 phys_addr = MapIoPage{cap}.address.Value() * PageSize;
const size_t num_pages = 1;
const size_t size = num_pages * PageSize;
R_UNLESS(num_pages != 0, ResultInvalidSize);
R_UNLESS(phys_addr < phys_addr + size, ResultInvalidAddress);
R_UNLESS(((phys_addr + size - 1) & ~PhysicalMapAllowedMask) == 0, ResultInvalidAddress);
// Do the mapping.
// R_RETURN(page_table->MapIo(phys_addr, size, KMemoryPermission_UserReadWrite));
UNIMPLEMENTED();
R_SUCCEED();
}
template <typename F>
Result KCapabilities::ProcessMapRegionCapability(const u32 cap, F f) {
// Define the allowed memory regions.
constexpr std::array<KMemoryRegionType, 4> MemoryRegions{
KMemoryRegionType_None,
KMemoryRegionType_KernelTraceBuffer,
KMemoryRegionType_OnMemoryBootImage,
KMemoryRegionType_DTB,
};
// Extract regions/read only.
const MapRegion pack{cap};
const std::array<RegionType, 3> types{pack.region0, pack.region1, pack.region2};
const std::array<u32, 3> ro{pack.read_only0, pack.read_only1, pack.read_only2};
for (size_t i = 0; i < types.size(); i++) {
const auto type = types[i];
const auto perm = ro[i] ? KMemoryPermission::UserRead : KMemoryPermission::UserReadWrite;
switch (type) {
case RegionType::NoMapping:
break;
case RegionType::KernelTraceBuffer:
case RegionType::OnMemoryBootImage:
case RegionType::DTB:
R_TRY(f(MemoryRegions[static_cast<u32>(type)], perm));
break;
default:
R_THROW(ResultNotFound);
}
}
R_SUCCEED();
}
Result KCapabilities::MapRegion_(const u32 cap, KPageTable* page_table) {
// Map each region into the process's page table.
2023-02-06 13:14:27 -05:00
return ProcessMapRegionCapability(
2023-01-28 19:38:00 -05:00
cap, [](KMemoryRegionType region_type, KMemoryPermission perm) -> Result {
// R_RETURN(page_table->MapRegion(region_type, perm));
UNIMPLEMENTED();
R_SUCCEED();
2023-02-06 13:14:27 -05:00
});
2023-01-28 19:38:00 -05:00
}
Result KCapabilities::CheckMapRegion(KernelCore& kernel, const u32 cap) {
// Check that each region has a physical backing store.
2023-02-06 13:14:27 -05:00
return ProcessMapRegionCapability(
2023-01-28 19:38:00 -05:00
cap, [&](KMemoryRegionType region_type, KMemoryPermission perm) -> Result {
R_UNLESS(kernel.MemoryLayout().GetPhysicalMemoryRegionTree().FindFirstDerived(
region_type) != nullptr,
ResultOutOfRange);
R_SUCCEED();
2023-02-06 13:14:27 -05:00
});
2023-01-28 19:38:00 -05:00
}
Result KCapabilities::SetInterruptPairCapability(const u32 cap) {
// Extract interrupts.
const InterruptPair pack{cap};
const std::array<u32, 2> ids{pack.interrupt_id0, pack.interrupt_id1};
for (size_t i = 0; i < ids.size(); i++) {
if (ids[i] != PaddingInterruptId) {
UNIMPLEMENTED();
// R_UNLESS(Kernel::GetInterruptManager().IsInterruptDefined(ids[i]), ResultOutOfRange);
// R_UNLESS(this->SetInterruptPermitted(ids[i]), ResultOutOfRange);
}
}
R_SUCCEED();
}
Result KCapabilities::SetProgramTypeCapability(const u32 cap) {
// Validate.
const ProgramType pack{cap};
R_UNLESS(pack.reserved == 0, ResultReservedUsed);
m_program_type = pack.type;
R_SUCCEED();
}
Result KCapabilities::SetKernelVersionCapability(const u32 cap) {
// Ensure we haven't set our version before.
R_UNLESS(KernelVersion{m_intended_kernel_version}.major_version == 0, ResultInvalidArgument);
// Set, ensure that we set a valid version.
m_intended_kernel_version = cap;
R_UNLESS(KernelVersion{m_intended_kernel_version}.major_version != 0, ResultInvalidArgument);
R_SUCCEED();
}
Result KCapabilities::SetHandleTableCapability(const u32 cap) {
// Validate.
const HandleTable pack{cap};
R_UNLESS(pack.reserved == 0, ResultReservedUsed);
m_handle_table_size = pack.size;
R_SUCCEED();
}
Result KCapabilities::SetDebugFlagsCapability(const u32 cap) {
// Validate.
const DebugFlags pack{cap};
R_UNLESS(pack.reserved == 0, ResultReservedUsed);
DebugFlags debug_capabilities{m_debug_capabilities};
debug_capabilities.allow_debug.Assign(pack.allow_debug);
debug_capabilities.force_debug.Assign(pack.force_debug);
m_debug_capabilities = debug_capabilities.raw;
R_SUCCEED();
}
Result KCapabilities::SetCapability(const u32 cap, u32& set_flags, u32& set_svc,
KPageTable* page_table) {
// Validate this is a capability we can act on.
const auto type = GetCapabilityType(cap);
R_UNLESS(type != CapabilityType::Invalid, ResultInvalidArgument);
// If the type is padding, we have no work to do.
R_SUCCEED_IF(type == CapabilityType::Padding);
// Check that we haven't already processed this capability.
const auto flag = GetCapabilityFlag(type);
R_UNLESS(((set_flags & InitializeOnceFlags) & flag) == 0, ResultInvalidCombination);
set_flags |= flag;
// Process the capability.
switch (type) {
case CapabilityType::CorePriority:
R_RETURN(this->SetCorePriorityCapability(cap));
case CapabilityType::SyscallMask:
R_RETURN(this->SetSyscallMaskCapability(cap, set_svc));
case CapabilityType::MapIoPage:
R_RETURN(this->MapIoPage_(cap, page_table));
case CapabilityType::MapRegion:
R_RETURN(this->MapRegion_(cap, page_table));
case CapabilityType::InterruptPair:
R_RETURN(this->SetInterruptPairCapability(cap));
case CapabilityType::ProgramType:
R_RETURN(this->SetProgramTypeCapability(cap));
case CapabilityType::KernelVersion:
R_RETURN(this->SetKernelVersionCapability(cap));
case CapabilityType::HandleTable:
R_RETURN(this->SetHandleTableCapability(cap));
case CapabilityType::DebugFlags:
R_RETURN(this->SetDebugFlagsCapability(cap));
default:
R_THROW(ResultInvalidArgument);
}
}
Result KCapabilities::SetCapabilities(std::span<const u32> caps, KPageTable* page_table) {
u32 set_flags = 0, set_svc = 0;
for (size_t i = 0; i < caps.size(); i++) {
const u32 cap{caps[i]};
if (GetCapabilityType(cap) == CapabilityType::MapRange) {
// Check that the pair cap exists.
R_UNLESS((++i) < caps.size(), ResultInvalidCombination);
// Check the pair cap is a map range cap.
const u32 size_cap{caps[i]};
R_UNLESS(GetCapabilityType(size_cap) == CapabilityType::MapRange,
ResultInvalidCombination);
// Map the range.
R_TRY(this->MapRange_(cap, size_cap, page_table));
} else {
R_TRY(this->SetCapability(cap, set_flags, set_svc, page_table));
}
}
R_SUCCEED();
}
Result KCapabilities::CheckCapabilities(KernelCore& kernel, std::span<const u32> caps) {
for (auto cap : caps) {
// Check the capability refers to a valid region.
if (GetCapabilityType(cap) == CapabilityType::MapRegion) {
R_TRY(CheckMapRegion(kernel, cap));
}
}
R_SUCCEED();
}
} // namespace Kernel