suyu/src/common/thread.h

120 lines
3.3 KiB
C
Raw Normal View History

2014-12-17 00:38:14 -05:00
// Copyright 2013 Dolphin Emulator Project / 2014 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
2016-12-11 16:26:23 -05:00
#include <chrono>
#include <condition_variable>
#include <cstddef>
#include <mutex>
#include <thread>
2015-06-20 17:45:15 -04:00
#include "common/common_types.h"
// Support for C++11's thread_local keyword was surprisingly spotty in compilers until very
// recently. Fortunately, thread local variables have been well supported for compilers for a while,
// but with semantics supporting only POD types, so we can use a few defines to get some amount of
// backwards compat support.
// WARNING: This only works correctly with POD types.
#if defined(__clang__)
#if !__has_feature(cxx_thread_local)
#define thread_local __thread
#endif
#elif defined(__GNUC__)
#if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 8)
#define thread_local __thread
#endif
#elif defined(_MSC_VER)
#if _MSC_VER < 1900
#define thread_local __declspec(thread)
#endif
#endif
2016-04-14 07:53:05 -04:00
namespace Common {
int CurrentThreadId();
void SetThreadAffinity(std::thread::native_handle_type thread, u32 mask);
void SetCurrentThreadAffinity(u32 mask);
class Event {
public:
Event() : is_set(false) {}
2014-04-01 18:20:08 -04:00
void Set() {
2016-04-14 07:53:05 -04:00
std::lock_guard<std::mutex> lk(mutex);
if (!is_set) {
2014-04-01 18:20:08 -04:00
is_set = true;
2016-04-14 07:53:05 -04:00
condvar.notify_one();
2014-04-01 18:20:08 -04:00
}
}
void Wait() {
2016-04-14 07:53:05 -04:00
std::unique_lock<std::mutex> lk(mutex);
condvar.wait(lk, [&] { return is_set; });
2014-04-01 18:20:08 -04:00
is_set = false;
}
2016-12-11 16:26:23 -05:00
template <class Clock, class Duration>
bool WaitUntil(const std::chrono::time_point<Clock, Duration>& time) {
std::unique_lock<std::mutex> lk(mutex);
if (!condvar.wait_until(lk, time, [this] { return is_set; }))
return false;
is_set = false;
return true;
}
void Reset() {
2016-04-14 07:53:05 -04:00
std::unique_lock<std::mutex> lk(mutex);
// no other action required, since wait loops on the predicate and any lingering signal will
// get cleared on the first iteration
2014-04-01 18:20:08 -04:00
is_set = false;
}
private:
bool is_set;
2016-04-14 07:53:05 -04:00
std::condition_variable condvar;
std::mutex mutex;
};
class Barrier {
public:
explicit Barrier(size_t count_) : count(count_), waiting(0), generation(0) {}
2014-04-01 18:20:08 -04:00
/// Blocks until all "count" threads have called Sync()
void Sync() {
2016-04-14 07:53:05 -04:00
std::unique_lock<std::mutex> lk(mutex);
2016-04-14 07:54:06 -04:00
const size_t current_generation = generation;
2014-04-01 18:20:08 -04:00
2016-04-14 07:53:05 -04:00
if (++waiting == count) {
2016-04-14 07:54:06 -04:00
generation++;
2016-04-14 07:53:05 -04:00
waiting = 0;
condvar.notify_all();
} else {
condvar.wait(lk,
[this, current_generation] { return current_generation != generation; });
2014-04-01 18:20:08 -04:00
}
}
private:
2016-04-14 07:53:05 -04:00
std::condition_variable condvar;
std::mutex mutex;
const size_t count;
size_t waiting;
2016-04-14 07:54:06 -04:00
size_t generation; // Incremented once each time the barrier is used
};
void SleepCurrentThread(int ms);
void SwitchCurrentThread(); // On Linux, this is equal to sleep 1ms
// Use this function during a spin-wait to make the current thread
// relax while another thread is working. This may be more efficient
// than using events because event functions use kernel calls.
2016-04-14 07:53:05 -04:00
inline void YieldCPU() {
2014-04-01 18:20:08 -04:00
std::this_thread::yield();
}
void SetCurrentThreadName(const char* name);
} // namespace Common