suyu/src/video_core/vertex_shader.cpp

625 lines
25 KiB
C++
Raw Normal View History

// Copyright 2014 Citra Emulator Project
2014-12-17 00:38:14 -05:00
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <boost/container/static_vector.hpp>
#include <boost/range/algorithm.hpp>
#include <common/file_util.h>
#include <nihstro/shader_bytecode.h>
#include "common/profiler.h"
#include "pica.h"
#include "vertex_shader.h"
#include "debug_utils/debug_utils.h"
using nihstro::OpCode;
using nihstro::Instruction;
using nihstro::RegisterType;
using nihstro::SourceRegister;
using nihstro::SwizzlePattern;
namespace Pica {
namespace VertexShader {
struct VertexShaderState {
const u32* program_counter;
const float24* input_register_table[16];
Math::Vec4<float24> output_registers[16];
Math::Vec4<float24> temporary_registers[16];
bool conditional_code[2];
// Two Address registers and one loop counter
// TODO: How many bits do these actually have?
s32 address_registers[3];
enum {
INVALID_ADDRESS = 0xFFFFFFFF
};
struct CallStackElement {
u32 final_address; // Address upon which we jump to return_address
u32 return_address; // Where to jump when leaving scope
u8 repeat_counter; // How often to repeat until this call stack element is removed
u8 loop_increment; // Which value to add to the loop counter after an iteration
// TODO: Should this be a signed value? Does it even matter?
u32 loop_address; // The address where we'll return to after each loop iteration
};
// TODO: Is there a maximal size for this?
boost::container::static_vector<CallStackElement, 16> call_stack;
struct {
u32 max_offset; // maximum program counter ever reached
u32 max_opdesc_id; // maximum swizzle pattern index ever used
} debug;
};
static void ProcessShaderCode(VertexShaderState& state) {
const auto& uniforms = g_state.vs.uniforms;
const auto& swizzle_data = g_state.vs.swizzle_data;
const auto& program_code = g_state.vs.program_code;
// Placeholder for invalid inputs
static float24 dummy_vec4_float24[4];
while (true) {
if (!state.call_stack.empty()) {
auto& top = state.call_stack.back();
if (state.program_counter - program_code.data() == top.final_address) {
state.address_registers[2] += top.loop_increment;
if (top.repeat_counter-- == 0) {
state.program_counter = &program_code[top.return_address];
state.call_stack.pop_back();
} else {
state.program_counter = &program_code[top.loop_address];
}
// TODO: Is "trying again" accurate to hardware?
continue;
}
}
bool exit_loop = false;
const Instruction& instr = *(const Instruction*)state.program_counter;
const SwizzlePattern& swizzle = *(SwizzlePattern*)&swizzle_data[instr.common.operand_desc_id];
static auto call = [&program_code](VertexShaderState& state, u32 offset, u32 num_instructions,
u32 return_offset, u8 repeat_count, u8 loop_increment) {
state.program_counter = &program_code[offset] - 1; // -1 to make sure when incrementing the PC we end up at the correct offset
ASSERT(state.call_stack.size() < state.call_stack.capacity());
state.call_stack.push_back({ offset + num_instructions, return_offset, repeat_count, loop_increment, offset });
};
u32 binary_offset = state.program_counter - program_code.data();
state.debug.max_offset = std::max<u32>(state.debug.max_offset, 1 + binary_offset);
auto LookupSourceRegister = [&](const SourceRegister& source_reg) -> const float24* {
switch (source_reg.GetRegisterType()) {
case RegisterType::Input:
return state.input_register_table[source_reg.GetIndex()];
case RegisterType::Temporary:
return &state.temporary_registers[source_reg.GetIndex()].x;
case RegisterType::FloatUniform:
return &uniforms.f[source_reg.GetIndex()].x;
default:
return dummy_vec4_float24;
}
};
switch (instr.opcode.Value().GetInfo().type) {
case OpCode::Type::Arithmetic:
{
const bool is_inverted = (0 != (instr.opcode.Value().GetInfo().subtype & OpCode::Info::SrcInversed));
const int address_offset = (instr.common.address_register_index == 0)
? 0 : state.address_registers[instr.common.address_register_index - 1];
const float24* src1_ = LookupSourceRegister(instr.common.GetSrc1(is_inverted) + (!is_inverted * address_offset));
const float24* src2_ = LookupSourceRegister(instr.common.GetSrc2(is_inverted) + ( is_inverted * address_offset));
const bool negate_src1 = ((bool)swizzle.negate_src1 != false);
const bool negate_src2 = ((bool)swizzle.negate_src2 != false);
float24 src1[4] = {
src1_[(int)swizzle.GetSelectorSrc1(0)],
src1_[(int)swizzle.GetSelectorSrc1(1)],
src1_[(int)swizzle.GetSelectorSrc1(2)],
src1_[(int)swizzle.GetSelectorSrc1(3)],
};
if (negate_src1) {
src1[0] = src1[0] * float24::FromFloat32(-1);
src1[1] = src1[1] * float24::FromFloat32(-1);
src1[2] = src1[2] * float24::FromFloat32(-1);
src1[3] = src1[3] * float24::FromFloat32(-1);
}
float24 src2[4] = {
src2_[(int)swizzle.GetSelectorSrc2(0)],
src2_[(int)swizzle.GetSelectorSrc2(1)],
src2_[(int)swizzle.GetSelectorSrc2(2)],
src2_[(int)swizzle.GetSelectorSrc2(3)],
};
if (negate_src2) {
src2[0] = src2[0] * float24::FromFloat32(-1);
src2[1] = src2[1] * float24::FromFloat32(-1);
src2[2] = src2[2] * float24::FromFloat32(-1);
src2[3] = src2[3] * float24::FromFloat32(-1);
}
float24* dest = (instr.common.dest.Value() < 0x10) ? &state.output_registers[instr.common.dest.Value().GetIndex()][0]
: (instr.common.dest.Value() < 0x20) ? &state.temporary_registers[instr.common.dest.Value().GetIndex()][0]
: dummy_vec4_float24;
state.debug.max_opdesc_id = std::max<u32>(state.debug.max_opdesc_id, 1+instr.common.operand_desc_id);
switch (instr.opcode.Value().EffectiveOpCode()) {
case OpCode::Id::ADD:
{
for (int i = 0; i < 4; ++i) {
if (!swizzle.DestComponentEnabled(i))
continue;
dest[i] = src1[i] + src2[i];
}
break;
}
case OpCode::Id::MUL:
{
for (int i = 0; i < 4; ++i) {
if (!swizzle.DestComponentEnabled(i))
continue;
dest[i] = src1[i] * src2[i];
}
break;
}
case OpCode::Id::FLR:
for (int i = 0; i < 4; ++i) {
if (!swizzle.DestComponentEnabled(i))
continue;
dest[i] = float24::FromFloat32(std::floor(src1[i].ToFloat32()));
}
break;
case OpCode::Id::MAX:
for (int i = 0; i < 4; ++i) {
if (!swizzle.DestComponentEnabled(i))
continue;
dest[i] = std::max(src1[i], src2[i]);
}
break;
case OpCode::Id::MIN:
for (int i = 0; i < 4; ++i) {
if (!swizzle.DestComponentEnabled(i))
continue;
dest[i] = std::min(src1[i], src2[i]);
}
break;
case OpCode::Id::DP3:
case OpCode::Id::DP4:
{
float24 dot = float24::FromFloat32(0.f);
int num_components = (instr.opcode.Value() == OpCode::Id::DP3) ? 3 : 4;
for (int i = 0; i < num_components; ++i)
dot = dot + src1[i] * src2[i];
for (int i = 0; i < 4; ++i) {
if (!swizzle.DestComponentEnabled(i))
continue;
dest[i] = dot;
}
break;
}
// Reciprocal
case OpCode::Id::RCP:
{
for (int i = 0; i < 4; ++i) {
if (!swizzle.DestComponentEnabled(i))
continue;
// TODO: Be stable against division by zero!
// TODO: I think this might be wrong... we should only use one component here
2015-02-01 15:31:21 -05:00
dest[i] = float24::FromFloat32(1.0f / src1[i].ToFloat32());
}
break;
}
// Reciprocal Square Root
case OpCode::Id::RSQ:
{
for (int i = 0; i < 4; ++i) {
if (!swizzle.DestComponentEnabled(i))
continue;
// TODO: Be stable against division by zero!
// TODO: I think this might be wrong... we should only use one component here
2015-02-01 15:31:21 -05:00
dest[i] = float24::FromFloat32(1.0f / sqrt(src1[i].ToFloat32()));
}
break;
}
case OpCode::Id::MOVA:
{
for (int i = 0; i < 2; ++i) {
if (!swizzle.DestComponentEnabled(i))
continue;
// TODO: Figure out how the rounding is done on hardware
state.address_registers[i] = static_cast<s32>(src1[i].ToFloat32());
}
break;
}
case OpCode::Id::MOV:
{
for (int i = 0; i < 4; ++i) {
if (!swizzle.DestComponentEnabled(i))
continue;
dest[i] = src1[i];
}
break;
}
case OpCode::Id::SLT:
case OpCode::Id::SLTI:
for (int i = 0; i < 4; ++i) {
if (!swizzle.DestComponentEnabled(i))
continue;
dest[i] = (src1[i] < src2[i]) ? float24::FromFloat32(1.0f) : float24::FromFloat32(0.0f);
}
break;
case OpCode::Id::CMP:
for (int i = 0; i < 2; ++i) {
// TODO: Can you restrict to one compare via dest masking?
auto compare_op = instr.common.compare_op;
auto op = (i == 0) ? compare_op.x.Value() : compare_op.y.Value();
switch (op) {
case compare_op.Equal:
state.conditional_code[i] = (src1[i] == src2[i]);
break;
case compare_op.NotEqual:
state.conditional_code[i] = (src1[i] != src2[i]);
break;
case compare_op.LessThan:
state.conditional_code[i] = (src1[i] < src2[i]);
break;
case compare_op.LessEqual:
state.conditional_code[i] = (src1[i] <= src2[i]);
break;
case compare_op.GreaterThan:
state.conditional_code[i] = (src1[i] > src2[i]);
break;
case compare_op.GreaterEqual:
state.conditional_code[i] = (src1[i] >= src2[i]);
break;
default:
LOG_ERROR(HW_GPU, "Unknown compare mode %x", static_cast<int>(op));
break;
}
}
break;
default:
LOG_ERROR(HW_GPU, "Unhandled arithmetic instruction: 0x%02x (%s): 0x%08x",
(int)instr.opcode.Value().EffectiveOpCode(), instr.opcode.Value().GetInfo().name, instr.hex);
DEBUG_ASSERT(false);
break;
}
break;
}
case OpCode::Type::MultiplyAdd:
{
if ((instr.opcode.Value().EffectiveOpCode() == OpCode::Id::MAD) ||
(instr.opcode.Value().EffectiveOpCode() == OpCode::Id::MADI)) {
const SwizzlePattern& swizzle = *(SwizzlePattern*)&swizzle_data[instr.mad.operand_desc_id];
bool is_inverted = (instr.opcode.Value().EffectiveOpCode() == OpCode::Id::MADI);
const float24* src1_ = LookupSourceRegister(instr.mad.GetSrc1(is_inverted));
const float24* src2_ = LookupSourceRegister(instr.mad.GetSrc2(is_inverted));
const float24* src3_ = LookupSourceRegister(instr.mad.GetSrc3(is_inverted));
const bool negate_src1 = ((bool)swizzle.negate_src1 != false);
const bool negate_src2 = ((bool)swizzle.negate_src2 != false);
const bool negate_src3 = ((bool)swizzle.negate_src3 != false);
float24 src1[4] = {
src1_[(int)swizzle.GetSelectorSrc1(0)],
src1_[(int)swizzle.GetSelectorSrc1(1)],
src1_[(int)swizzle.GetSelectorSrc1(2)],
src1_[(int)swizzle.GetSelectorSrc1(3)],
};
if (negate_src1) {
src1[0] = src1[0] * float24::FromFloat32(-1);
src1[1] = src1[1] * float24::FromFloat32(-1);
src1[2] = src1[2] * float24::FromFloat32(-1);
src1[3] = src1[3] * float24::FromFloat32(-1);
}
float24 src2[4] = {
src2_[(int)swizzle.GetSelectorSrc2(0)],
src2_[(int)swizzle.GetSelectorSrc2(1)],
src2_[(int)swizzle.GetSelectorSrc2(2)],
src2_[(int)swizzle.GetSelectorSrc2(3)],
};
if (negate_src2) {
src2[0] = src2[0] * float24::FromFloat32(-1);
src2[1] = src2[1] * float24::FromFloat32(-1);
src2[2] = src2[2] * float24::FromFloat32(-1);
src2[3] = src2[3] * float24::FromFloat32(-1);
}
float24 src3[4] = {
src3_[(int)swizzle.GetSelectorSrc3(0)],
src3_[(int)swizzle.GetSelectorSrc3(1)],
src3_[(int)swizzle.GetSelectorSrc3(2)],
src3_[(int)swizzle.GetSelectorSrc3(3)],
};
if (negate_src3) {
src3[0] = src3[0] * float24::FromFloat32(-1);
src3[1] = src3[1] * float24::FromFloat32(-1);
src3[2] = src3[2] * float24::FromFloat32(-1);
src3[3] = src3[3] * float24::FromFloat32(-1);
}
float24* dest = (instr.mad.dest.Value() < 0x10) ? &state.output_registers[instr.mad.dest.Value().GetIndex()][0]
: (instr.mad.dest.Value() < 0x20) ? &state.temporary_registers[instr.mad.dest.Value().GetIndex()][0]
: dummy_vec4_float24;
for (int i = 0; i < 4; ++i) {
if (!swizzle.DestComponentEnabled(i))
continue;
dest[i] = src1[i] * src2[i] + src3[i];
}
} else {
LOG_ERROR(HW_GPU, "Unhandled multiply-add instruction: 0x%02x (%s): 0x%08x",
(int)instr.opcode.Value().EffectiveOpCode(), instr.opcode.Value().GetInfo().name, instr.hex);
}
break;
}
default:
{
static auto evaluate_condition = [](const VertexShaderState& state, bool refx, bool refy, Instruction::FlowControlType flow_control) {
bool results[2] = { refx == state.conditional_code[0],
refy == state.conditional_code[1] };
switch (flow_control.op) {
case flow_control.Or:
return results[0] || results[1];
case flow_control.And:
return results[0] && results[1];
case flow_control.JustX:
return results[0];
case flow_control.JustY:
return results[1];
}
};
// Handle each instruction on its own
switch (instr.opcode.Value()) {
case OpCode::Id::END:
exit_loop = true;
break;
case OpCode::Id::JMPC:
if (evaluate_condition(state, instr.flow_control.refx, instr.flow_control.refy, instr.flow_control)) {
state.program_counter = &program_code[instr.flow_control.dest_offset] - 1;
}
break;
case OpCode::Id::JMPU:
if (uniforms.b[instr.flow_control.bool_uniform_id]) {
state.program_counter = &program_code[instr.flow_control.dest_offset] - 1;
}
break;
case OpCode::Id::CALL:
2014-12-20 09:19:36 -05:00
call(state,
instr.flow_control.dest_offset,
instr.flow_control.num_instructions,
binary_offset + 1, 0, 0);
break;
case OpCode::Id::CALLU:
if (uniforms.b[instr.flow_control.bool_uniform_id]) {
call(state,
instr.flow_control.dest_offset,
instr.flow_control.num_instructions,
binary_offset + 1, 0, 0);
}
break;
case OpCode::Id::CALLC:
if (evaluate_condition(state, instr.flow_control.refx, instr.flow_control.refy, instr.flow_control)) {
call(state,
instr.flow_control.dest_offset,
instr.flow_control.num_instructions,
binary_offset + 1, 0, 0);
}
break;
case OpCode::Id::NOP:
break;
case OpCode::Id::IFU:
if (uniforms.b[instr.flow_control.bool_uniform_id]) {
2014-12-20 09:19:36 -05:00
call(state,
binary_offset + 1,
instr.flow_control.dest_offset - binary_offset - 1,
instr.flow_control.dest_offset + instr.flow_control.num_instructions, 0, 0);
} else {
2014-12-20 09:19:36 -05:00
call(state,
instr.flow_control.dest_offset,
instr.flow_control.num_instructions,
instr.flow_control.dest_offset + instr.flow_control.num_instructions, 0, 0);
}
break;
case OpCode::Id::IFC:
{
// TODO: Do we need to consider swizzlers here?
if (evaluate_condition(state, instr.flow_control.refx, instr.flow_control.refy, instr.flow_control)) {
2014-12-20 09:19:36 -05:00
call(state,
binary_offset + 1,
instr.flow_control.dest_offset - binary_offset - 1,
instr.flow_control.dest_offset + instr.flow_control.num_instructions, 0, 0);
} else {
2014-12-20 09:19:36 -05:00
call(state,
instr.flow_control.dest_offset,
instr.flow_control.num_instructions,
instr.flow_control.dest_offset + instr.flow_control.num_instructions, 0, 0);
}
break;
}
case OpCode::Id::LOOP:
{
state.address_registers[2] = uniforms.i[instr.flow_control.int_uniform_id].y;
call(state,
binary_offset + 1,
instr.flow_control.dest_offset - binary_offset + 1,
instr.flow_control.dest_offset + 1,
uniforms.i[instr.flow_control.int_uniform_id].x,
uniforms.i[instr.flow_control.int_uniform_id].z);
break;
}
default:
LOG_ERROR(HW_GPU, "Unhandled instruction: 0x%02x (%s): 0x%08x",
(int)instr.opcode.Value().EffectiveOpCode(), instr.opcode.Value().GetInfo().name, instr.hex);
break;
}
break;
}
}
++state.program_counter;
if (exit_loop)
break;
}
}
static Common::Profiling::TimingCategory shader_category("Vertex Shader");
OutputVertex RunShader(const InputVertex& input, int num_attributes, const Regs::ShaderConfig& config, const State::ShaderSetup& setup) {
Common::Profiling::ScopeTimer timer(shader_category);
VertexShaderState state;
const u32* main = &setup.program_code[config.main_offset];
state.program_counter = (u32*)main;
state.debug.max_offset = 0;
state.debug.max_opdesc_id = 0;
// Setup input register table
const auto& attribute_register_map = config.input_register_map;
float24 dummy_register;
boost::fill(state.input_register_table, &dummy_register);
if (num_attributes > 0) state.input_register_table[attribute_register_map.attribute0_register] = &input.attr[0].x;
if (num_attributes > 1) state.input_register_table[attribute_register_map.attribute1_register] = &input.attr[1].x;
if (num_attributes > 2) state.input_register_table[attribute_register_map.attribute2_register] = &input.attr[2].x;
if (num_attributes > 3) state.input_register_table[attribute_register_map.attribute3_register] = &input.attr[3].x;
if (num_attributes > 4) state.input_register_table[attribute_register_map.attribute4_register] = &input.attr[4].x;
if (num_attributes > 5) state.input_register_table[attribute_register_map.attribute5_register] = &input.attr[5].x;
if (num_attributes > 6) state.input_register_table[attribute_register_map.attribute6_register] = &input.attr[6].x;
if (num_attributes > 7) state.input_register_table[attribute_register_map.attribute7_register] = &input.attr[7].x;
if (num_attributes > 8) state.input_register_table[attribute_register_map.attribute8_register] = &input.attr[8].x;
if (num_attributes > 9) state.input_register_table[attribute_register_map.attribute9_register] = &input.attr[9].x;
if (num_attributes > 10) state.input_register_table[attribute_register_map.attribute10_register] = &input.attr[10].x;
if (num_attributes > 11) state.input_register_table[attribute_register_map.attribute11_register] = &input.attr[11].x;
if (num_attributes > 12) state.input_register_table[attribute_register_map.attribute12_register] = &input.attr[12].x;
if (num_attributes > 13) state.input_register_table[attribute_register_map.attribute13_register] = &input.attr[13].x;
if (num_attributes > 14) state.input_register_table[attribute_register_map.attribute14_register] = &input.attr[14].x;
if (num_attributes > 15) state.input_register_table[attribute_register_map.attribute15_register] = &input.attr[15].x;
state.conditional_code[0] = false;
state.conditional_code[1] = false;
ProcessShaderCode(state);
DebugUtils::DumpShader(setup.program_code.data(), state.debug.max_offset, setup.swizzle_data.data(),
state.debug.max_opdesc_id, config.main_offset,
g_state.regs.vs_output_attributes); // TODO: Don't hardcode VS here
// Setup output data
OutputVertex ret;
// TODO(neobrain): Under some circumstances, up to 16 attributes may be output. We need to
// figure out what those circumstances are and enable the remaining outputs then.
for (int i = 0; i < 7; ++i) {
const auto& output_register_map = g_state.regs.vs_output_attributes[i]; // TODO: Don't hardcode VS here
u32 semantics[4] = {
output_register_map.map_x, output_register_map.map_y,
output_register_map.map_z, output_register_map.map_w
};
for (int comp = 0; comp < 4; ++comp) {
float24* out = ((float24*)&ret) + semantics[comp];
if (semantics[comp] != Regs::VSOutputAttributes::INVALID) {
*out = state.output_registers[i][comp];
} else {
// Zero output so that attributes which aren't output won't have denormals in them,
// which would slow us down later.
memset(out, 0, sizeof(*out));
}
}
}
LOG_TRACE(Render_Software, "Output vertex: pos (%.2f, %.2f, %.2f, %.2f), col(%.2f, %.2f, %.2f, %.2f), tc0(%.2f, %.2f)",
ret.pos.x.ToFloat32(), ret.pos.y.ToFloat32(), ret.pos.z.ToFloat32(), ret.pos.w.ToFloat32(),
ret.color.x.ToFloat32(), ret.color.y.ToFloat32(), ret.color.z.ToFloat32(), ret.color.w.ToFloat32(),
ret.tc0.u().ToFloat32(), ret.tc0.v().ToFloat32());
return ret;
}
} // namespace
} // namespace