suyu/src/core/hle/kernel/scheduler.h

222 lines
7.4 KiB
C++
Raw Normal View History

// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <mutex>
#include <vector>
#include "common/common_types.h"
#include "common/multi_level_queue.h"
#include "core/hle/kernel/object.h"
#include "core/hle/kernel/thread.h"
namespace Core {
class ARM_Interface;
class System;
} // namespace Core
namespace Kernel {
class Process;
2019-03-29 17:01:17 -04:00
class GlobalScheduler final {
public:
2019-03-29 17:01:17 -04:00
static constexpr u32 NUM_CPU_CORES = 4;
2019-06-19 09:11:18 -04:00
explicit GlobalScheduler(Core::System& system);
2019-03-29 17:01:17 -04:00
~GlobalScheduler();
/// Adds a new thread to the scheduler
void AddThread(SharedPtr<Thread> thread);
/// Removes a thread from the scheduler
2019-06-19 09:11:18 -04:00
void RemoveThread(const Thread* thread);
2019-03-29 17:01:17 -04:00
/// Returns a list of all threads managed by the scheduler
const std::vector<SharedPtr<Thread>>& GetThreadList() const {
return thread_list;
}
2019-06-19 09:11:18 -04:00
// Add a thread to the suggested queue of a cpu core. Suggested threads may be
// picked if no thread is scheduled to run on the core.
2019-03-29 17:01:17 -04:00
void Suggest(u32 priority, u32 core, Thread* thread) {
suggested_queue[core].add(thread, priority);
}
2019-06-19 09:11:18 -04:00
// Remove a thread to the suggested queue of a cpu core. Suggested threads may be
// picked if no thread is scheduled to run on the core.
2019-03-29 17:01:17 -04:00
void Unsuggest(u32 priority, u32 core, Thread* thread) {
suggested_queue[core].remove(thread, priority);
}
2019-06-19 09:11:18 -04:00
// Add a thread to the scheduling queue of a cpu core. The thread is added at the
// back the queue in its priority level
void Schedule(u32 priority, u32 core, Thread* thread);
2019-06-19 09:11:18 -04:00
// Add a thread to the scheduling queue of a cpu core. The thread is added at the
// front the queue in its priority level
void SchedulePrepend(u32 priority, u32 core, Thread* thread);
2019-06-19 09:11:18 -04:00
// Reschedule an already scheduled thread based on a new priority
2019-03-29 17:01:17 -04:00
void Reschedule(u32 priority, u32 core, Thread* thread) {
scheduled_queue[core].remove(thread, priority);
scheduled_queue[core].add(thread, priority);
}
2019-06-19 09:11:18 -04:00
// Unschedule a thread.
2019-03-29 17:01:17 -04:00
void Unschedule(u32 priority, u32 core, Thread* thread) {
scheduled_queue[core].remove(thread, priority);
}
2018-11-18 23:44:19 -05:00
2019-06-19 09:11:18 -04:00
// Transfers a thread into an specific core. If the destination_core is -1
// it will be unscheduled from its source code and added into its suggested
// queue.
2019-03-29 17:01:17 -04:00
void TransferToCore(u32 priority, s32 destination_core, Thread* thread) {
2019-06-19 09:11:18 -04:00
const bool schedulable = thread->GetPriority() < THREADPRIO_COUNT;
const s32 source_core = thread->GetProcessorID();
if (source_core == destination_core || !schedulable) {
2019-03-29 17:01:17 -04:00
return;
2019-06-19 09:11:18 -04:00
}
2019-03-29 17:01:17 -04:00
thread->SetProcessorID(destination_core);
2019-06-19 09:11:18 -04:00
if (source_core >= 0) {
2019-03-29 17:01:17 -04:00
Unschedule(priority, source_core, thread);
2019-06-19 09:11:18 -04:00
}
2019-03-29 17:01:17 -04:00
if (destination_core >= 0) {
Unsuggest(priority, destination_core, thread);
Schedule(priority, destination_core, thread);
}
2019-06-19 09:11:18 -04:00
if (source_core >= 0) {
2019-03-29 17:01:17 -04:00
Suggest(priority, source_core, thread);
2019-06-19 09:11:18 -04:00
}
2019-03-29 17:01:17 -04:00
}
2019-04-02 08:03:44 -04:00
/*
* UnloadThread selects a core and forces it to unload its current thread's context
*/
2019-03-29 17:01:17 -04:00
void UnloadThread(s32 core);
2019-04-02 08:03:44 -04:00
/*
* SelectThread takes care of selecting the new scheduled thread.
* It does it in 3 steps:
* - First a thread is selected from the top of the priority queue. If no thread
* is obtained then we move to step two, else we are done.
* - Second we try to get a suggested thread that's not assigned to any core or
* that is not the top thread in that core.
* - Third is no suggested thread is found, we do a second pass and pick a running
* thread in another core and swap it with its current thread.
*/
2019-03-29 17:01:17 -04:00
void SelectThread(u32 core);
2019-06-19 09:11:18 -04:00
bool HaveReadyThreads(u32 core_id) const {
2019-03-29 17:01:17 -04:00
return !scheduled_queue[core_id].empty();
}
2019-04-02 08:03:44 -04:00
/*
* YieldThread takes a thread and moves it to the back of the it's priority list
* This operation can be redundant and no scheduling is changed if marked as so.
*/
2019-03-29 17:01:17 -04:00
void YieldThread(Thread* thread);
2019-04-02 08:03:44 -04:00
/*
* YieldThreadAndBalanceLoad takes a thread and moves it to the back of the it's priority list.
* Afterwards, tries to pick a suggested thread from the suggested queue that has worse time or
* a better priority than the next thread in the core.
* This operation can be redundant and no scheduling is changed if marked as so.
*/
2019-03-29 17:01:17 -04:00
void YieldThreadAndBalanceLoad(Thread* thread);
2019-04-02 08:03:44 -04:00
/*
* YieldThreadAndWaitForLoadBalancing takes a thread and moves it out of the scheduling queue
* and into the suggested queue. If no thread can be squeduled afterwards in that core,
* a suggested thread is obtained instead.
* This operation can be redundant and no scheduling is changed if marked as so.
*/
2019-03-29 17:01:17 -04:00
void YieldThreadAndWaitForLoadBalancing(Thread* thread);
u32 CpuCoresCount() const {
return NUM_CPU_CORES;
}
void SetReselectionPending() {
reselection_pending.store(true, std::memory_order_release);
}
2019-06-19 09:11:18 -04:00
bool IsReselectionPending() const {
return reselection_pending.load();
}
private:
2019-03-29 17:01:17 -04:00
void AskForReselectionOrMarkRedundant(Thread* current_thread, Thread* winner);
static constexpr u32 min_regular_priority = 2;
std::array<Common::MultiLevelQueue<Thread*, THREADPRIO_COUNT>, NUM_CPU_CORES> scheduled_queue;
std::array<Common::MultiLevelQueue<Thread*, THREADPRIO_COUNT>, NUM_CPU_CORES> suggested_queue;
std::atomic<bool> reselection_pending;
/// Lists all thread ids that aren't deleted/etc.
std::vector<SharedPtr<Thread>> thread_list;
2019-06-19 09:11:18 -04:00
Core::System& system;
2019-03-29 17:01:17 -04:00
};
class Scheduler final {
public:
2019-06-19 09:11:18 -04:00
explicit Scheduler(Core::System& system, Core::ARM_Interface& cpu_core, const u32 core_id);
2019-03-29 17:01:17 -04:00
~Scheduler();
/// Returns whether there are any threads that are ready to run.
bool HaveReadyThreads() const;
/// Reschedules to the next available thread (call after current thread is suspended)
void TryDoContextSwitch();
void UnloadThread();
void SelectThreads();
/// Gets the current running thread
Thread* GetCurrentThread() const;
Thread* GetSelectedThread() const;
/// Gets the timestamp for the last context switch in ticks.
u64 GetLastContextSwitchTicks() const;
bool ContextSwitchPending() const {
return context_switch_pending;
}
2019-03-29 17:01:17 -04:00
private:
friend class GlobalScheduler;
/**
* Switches the CPU's active thread context to that of the specified thread
* @param new_thread The thread to switch to
*/
2019-03-29 17:01:17 -04:00
void SwitchContext();
/**
* Called on every context switch to update the internal timestamp
* This also updates the running time ticks for the given thread and
* process using the following difference:
*
* ticks += most_recent_ticks - last_context_switch_ticks
*
* The internal tick timestamp for the scheduler is simply the
* most recent tick count retrieved. No special arithmetic is
* applied to it.
*/
void UpdateLastContextSwitchTime(Thread* thread, Process* process);
SharedPtr<Thread> current_thread = nullptr;
2019-03-29 17:01:17 -04:00
SharedPtr<Thread> selected_thread = nullptr;
2019-03-29 17:01:17 -04:00
Core::System& system;
Core::ARM_Interface& cpu_core;
u64 last_context_switch_time = 0;
2019-03-29 17:01:17 -04:00
u64 idle_selection_count = 0;
2019-06-19 09:11:18 -04:00
const u32 core_id;
2019-03-29 17:01:17 -04:00
bool context_switch_pending = false;
};
} // namespace Kernel