suyu/externals/microprofile/microprofile.h

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

3604 lines
121 KiB
C++
Raw Normal View History

#pragma once
// This is free and unencumbered software released into the public domain.
// Anyone is free to copy, modify, publish, use, compile, sell, or
// distribute this software, either in source code form or as a compiled
// binary, for any purpose, commercial or non-commercial, and by any
// means.
// In jurisdictions that recognize copyright laws, the author or authors
// of this software dedicate any and all copyright interest in the
// software to the public domain. We make this dedication for the benefit
// of the public at large and to the detriment of our heirs and
// successors. We intend this dedication to be an overt act of
// relinquishment in perpetuity of all present and future rights to this
// software under copyright law.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
// IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
// OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
// For more information, please refer to <http://unlicense.org/>
//
// ***********************************************************************
//
//
//
//
// Howto:
// Call these functions from your code:
// MicroProfileOnThreadCreate
// MicroProfileMouseButton
// MicroProfileMousePosition
// MicroProfileModKey
// MicroProfileFlip <-- Call this once per frame
// MicroProfileDraw <-- Call this once per frame
// MicroProfileToggleDisplayMode <-- Bind to a key to toggle profiling
// MicroProfileTogglePause <-- Bind to a key to toggle pause
//
// Use these macros in your code in blocks you want to time:
//
// MICROPROFILE_DECLARE
// MICROPROFILE_DEFINE
// MICROPROFILE_DECLARE_GPU
// MICROPROFILE_DEFINE_GPU
// MICROPROFILE_SCOPE
// MICROPROFILE_SCOPEI
// MICROPROFILE_SCOPEGPU
// MICROPROFILE_SCOPEGPUI
// MICROPROFILE_META
//
//
// Usage:
//
// {
// MICROPROFILE_SCOPEI("GroupName", "TimerName", nColorRgb):
// ..Code to be timed..
// }
//
// MICROPROFILE_DECLARE / MICROPROFILE_DEFINE allows defining groups in a shared place, to ensure sorting of the timers
//
// (in global scope)
// MICROPROFILE_DEFINE(g_ProfileFisk, "Fisk", "Skalle", nSomeColorRgb);
//
// (in some other file)
// MICROPROFILE_DECLARE(g_ProfileFisk);
//
// void foo(){
// MICROPROFILE_SCOPE(g_ProfileFisk);
// }
//
// Once code is instrumented the gui is activeted by calling MicroProfileToggleDisplayMode or by clicking in the upper left corner of
// the screen
//
// The following functions must be implemented before the profiler is usable
// debug render:
// void MicroProfileDrawText(int nX, int nY, uint32_t nColor, const char* pText, uint32_t nNumCharacters);
// void MicroProfileDrawBox(int nX, int nY, int nX1, int nY1, uint32_t nColor, MicroProfileBoxType = MicroProfileBoxTypeFlat);
// void MicroProfileDrawLine2D(uint32_t nVertices, float* pVertices, uint32_t nColor);
// Gpu time stamps: (See below for d3d/opengl helper)
// uint32_t MicroProfileGpuInsertTimeStamp();
// uint64_t MicroProfileGpuGetTimeStamp(uint32_t nKey);
// uint64_t MicroProfileTicksPerSecondGpu();
// threading:
// const char* MicroProfileGetThreadName(); Threadnames in detailed view
//
// Default implementations of Gpu timestamp functions:
// Opengl:
// in .c file where MICROPROFILE_IMPL is defined:
// #define MICROPROFILE_GPU_TIMERS_GL
// call MicroProfileGpuInitGL() on startup
// D3D11:
// in .c file where MICROPROFILE_IMPL is defined:
// #define MICROPROFILE_GPU_TIMERS_D3D11
// call MICROPROFILE_GPU_TIMERS_D3D11(). Pass Device & ImmediateContext
//
// Limitations:
// GPU timestamps can only be inserted from one thread.
#ifndef MICROPROFILE_ENABLED
#define MICROPROFILE_ENABLED 1
#endif
#include <stdint.h>
typedef uint64_t MicroProfileToken;
typedef uint16_t MicroProfileGroupId;
#if 0 == MICROPROFILE_ENABLED
#define MICROPROFILE_DECLARE(var)
#define MICROPROFILE_DEFINE(var, group, name, color)
#define MICROPROFILE_REGISTER_GROUP(group, color, category)
#define MICROPROFILE_DECLARE_GPU(var)
#define MICROPROFILE_DEFINE_GPU(var, name, color)
#define MICROPROFILE_SCOPE(var) do{}while(0)
#define MICROPROFILE_SCOPEI(group, name, color) do{}while(0)
#define MICROPROFILE_SCOPEGPU(var) do{}while(0)
#define MICROPROFILE_SCOPEGPUI( name, color) do{}while(0)
#define MICROPROFILE_META_CPU(name, count)
#define MICROPROFILE_META_GPU(name, count)
#define MICROPROFILE_FORCEENABLECPUGROUP(s) do{} while(0)
#define MICROPROFILE_FORCEDISABLECPUGROUP(s) do{} while(0)
#define MICROPROFILE_FORCEENABLEGPUGROUP(s) do{} while(0)
#define MICROPROFILE_FORCEDISABLEGPUGROUP(s) do{} while(0)
#define MICROPROFILE_SCOPE_TOKEN(token)
#define MicroProfileGetTime(group, name) 0.f
#define MicroProfileOnThreadCreate(foo) do{}while(0)
#define MicroProfileFlip() do{}while(0)
#define MicroProfileSetAggregateFrames(a) do{}while(0)
#define MicroProfileGetAggregateFrames() 0
#define MicroProfileGetCurrentAggregateFrames() 0
#define MicroProfileTogglePause() do{}while(0)
#define MicroProfileToggleAllGroups() do{} while(0)
#define MicroProfileDumpTimers() do{}while(0)
#define MicroProfileShutdown() do{}while(0)
#define MicroProfileSetForceEnable(a) do{} while(0)
#define MicroProfileGetForceEnable() false
#define MicroProfileSetEnableAllGroups(a) do{} while(0)
#define MicroProfileEnableCategory(a) do{} while(0)
#define MicroProfileDisableCategory(a) do{} while(0)
#define MicroProfileGetEnableAllGroups() false
#define MicroProfileSetForceMetaCounters(a)
#define MicroProfileGetForceMetaCounters() 0
#define MicroProfileEnableMetaCounter(c) do{}while(0)
#define MicroProfileDisableMetaCounter(c) do{}while(0)
#define MicroProfileDumpFile(html,csv) do{} while(0)
#define MicroProfileWebServerPort() ((uint32_t)-1)
#else
#include <stdint.h>
#include <string.h>
#include <algorithm>
#include <array>
#include <atomic>
#include <mutex>
#include <thread>
#ifndef MICROPROFILE_API
#define MICROPROFILE_API
#endif
MICROPROFILE_API int64_t MicroProfileTicksPerSecondCpu();
#if defined(__APPLE__)
#include <mach/mach.h>
#include <mach/mach_time.h>
#include <unistd.h>
#include <libkern/OSAtomic.h>
#include <TargetConditionals.h>
#if TARGET_OS_IPHONE
#define MICROPROFILE_IOS
#endif
#define MP_TICK() mach_absolute_time()
inline int64_t MicroProfileTicksPerSecondCpu()
{
static int64_t nTicksPerSecond = 0;
if(nTicksPerSecond == 0)
{
mach_timebase_info_data_t sTimebaseInfo;
mach_timebase_info(&sTimebaseInfo);
nTicksPerSecond = 1000000000ll * sTimebaseInfo.denom / sTimebaseInfo.numer;
}
return nTicksPerSecond;
}
inline uint64_t MicroProfileGetCurrentThreadId()
{
uint64_t tid;
pthread_threadid_np(pthread_self(), &tid);
return tid;
}
#define MP_BREAK() __builtin_trap()
#define MP_THREAD_LOCAL __thread
#define MP_STRCASECMP strcasecmp
#define MP_GETCURRENTTHREADID() MicroProfileGetCurrentThreadId()
typedef uint64_t ThreadIdType;
#elif defined(_WIN32)
int64_t MicroProfileGetTick();
#define MP_TICK() MicroProfileGetTick()
#define MP_BREAK() __debugbreak()
2017-02-04 18:36:38 -05:00
#define MP_THREAD_LOCAL thread_local
#define MP_STRCASECMP _stricmp
#define MP_GETCURRENTTHREADID() GetCurrentThreadId()
typedef uint32_t ThreadIdType;
#elif !defined(_WIN32)
#include <unistd.h>
#include <time.h>
inline int64_t MicroProfileTicksPerSecondCpu()
{
return 1000000000ll;
}
inline int64_t MicroProfileGetTick()
{
timespec ts;
clock_gettime(CLOCK_REALTIME, &ts);
return 1000000000ll * ts.tv_sec + ts.tv_nsec;
}
#define MP_TICK() MicroProfileGetTick()
#define MP_BREAK() __builtin_trap()
#define MP_THREAD_LOCAL __thread
#define MP_STRCASECMP strcasecmp
#define MP_GETCURRENTTHREADID() (uint64_t)pthread_self()
typedef uint64_t ThreadIdType;
#endif
#ifndef MP_GETCURRENTTHREADID
#define MP_GETCURRENTTHREADID() 0
typedef uint32_t ThreadIdType;
#endif
#define MP_ASSERT(a) do{if(!(a)){MP_BREAK();} }while(0)
#define MICROPROFILE_DECLARE(var) extern MicroProfileToken g_mp_##var
#define MICROPROFILE_DEFINE(var, group, name, color) MicroProfileToken g_mp_##var = MicroProfileGetToken(group, name, color, MicroProfileTokenTypeCpu)
#define MICROPROFILE_REGISTER_GROUP(group, category, color) MicroProfileRegisterGroup(group, category, color)
#define MICROPROFILE_DECLARE_GPU(var) extern MicroProfileToken g_mp_##var
#define MICROPROFILE_DEFINE_GPU(var, name, color) MicroProfileToken g_mp_##var = MicroProfileGetToken("GPU", name, color, MicroProfileTokenTypeGpu)
#define MICROPROFILE_TOKEN_PASTE0(a, b) a ## b
#define MICROPROFILE_TOKEN_PASTE(a, b) MICROPROFILE_TOKEN_PASTE0(a,b)
2020-03-12 10:50:48 -04:00
#define MICROPROFILE_TOKEN(var) g_mp_##var
#define MICROPROFILE_SCOPE(var) MicroProfileScopeHandler MICROPROFILE_TOKEN_PASTE(foo, __LINE__)(g_mp_##var)
#define MICROPROFILE_SCOPE_TOKEN(token) MicroProfileScopeHandler MICROPROFILE_TOKEN_PASTE(foo, __LINE__)(token)
#define MICROPROFILE_SCOPEI(group, name, color) static MicroProfileToken MICROPROFILE_TOKEN_PASTE(g_mp,__LINE__) = MicroProfileGetToken(group, name, color, MicroProfileTokenTypeCpu); MicroProfileScopeHandler MICROPROFILE_TOKEN_PASTE(foo,__LINE__)( MICROPROFILE_TOKEN_PASTE(g_mp,__LINE__))
#define MICROPROFILE_SCOPEGPU(var) MicroProfileScopeGpuHandler MICROPROFILE_TOKEN_PASTE(foo, __LINE__)(g_mp_##var)
#define MICROPROFILE_SCOPEGPUI(name, color) static MicroProfileToken MICROPROFILE_TOKEN_PASTE(g_mp,__LINE__) = MicroProfileGetToken("GPU", name, color, MicroProfileTokenTypeGpu); MicroProfileScopeGpuHandler MICROPROFILE_TOKEN_PASTE(foo,__LINE__)( MICROPROFILE_TOKEN_PASTE(g_mp,__LINE__))
#define MICROPROFILE_META_CPU(name, count) static MicroProfileToken MICROPROFILE_TOKEN_PASTE(g_mp_meta,__LINE__) = MicroProfileGetMetaToken(name); MicroProfileMetaUpdate(MICROPROFILE_TOKEN_PASTE(g_mp_meta,__LINE__), count, MicroProfileTokenTypeCpu)
#define MICROPROFILE_META_GPU(name, count) static MicroProfileToken MICROPROFILE_TOKEN_PASTE(g_mp_meta,__LINE__) = MicroProfileGetMetaToken(name); MicroProfileMetaUpdate(MICROPROFILE_TOKEN_PASTE(g_mp_meta,__LINE__), count, MicroProfileTokenTypeGpu)
#ifndef MICROPROFILE_USE_THREAD_NAME_CALLBACK
#define MICROPROFILE_USE_THREAD_NAME_CALLBACK 0
#endif
#ifndef MICROPROFILE_PER_THREAD_BUFFER_SIZE
#define MICROPROFILE_PER_THREAD_BUFFER_SIZE (2048<<10)
#endif
#ifndef MICROPROFILE_MAX_FRAME_HISTORY
#define MICROPROFILE_MAX_FRAME_HISTORY 512
#endif
#ifndef MICROPROFILE_PRINTF
#define MICROPROFILE_PRINTF printf
#endif
#ifndef MICROPROFILE_META_MAX
#define MICROPROFILE_META_MAX 8
#endif
#ifndef MICROPROFILE_WEBSERVER_PORT
#define MICROPROFILE_WEBSERVER_PORT 1338
#endif
#ifndef MICROPROFILE_WEBSERVER
#define MICROPROFILE_WEBSERVER 1
#endif
#ifndef MICROPROFILE_WEBSERVER_MAXFRAMES
#define MICROPROFILE_WEBSERVER_MAXFRAMES 30
#endif
#ifndef MICROPROFILE_WEBSERVER_SOCKET_BUFFER_SIZE
#define MICROPROFILE_WEBSERVER_SOCKET_BUFFER_SIZE (16<<10)
#endif
#ifndef MICROPROFILE_GPU_TIMERS
#define MICROPROFILE_GPU_TIMERS 1
#endif
#ifndef MICROPROFILE_GPU_FRAME_DELAY
#define MICROPROFILE_GPU_FRAME_DELAY 3 //must be > 0
#endif
#ifndef MICROPROFILE_NAME_MAX_LEN
#define MICROPROFILE_NAME_MAX_LEN 64
#endif
#define MICROPROFILE_FORCEENABLECPUGROUP(s) MicroProfileForceEnableGroup(s, MicroProfileTokenTypeCpu)
#define MICROPROFILE_FORCEDISABLECPUGROUP(s) MicroProfileForceDisableGroup(s, MicroProfileTokenTypeCpu)
#define MICROPROFILE_FORCEENABLEGPUGROUP(s) MicroProfileForceEnableGroup(s, MicroProfileTokenTypeGpu)
#define MICROPROFILE_FORCEDISABLEGPUGROUP(s) MicroProfileForceDisableGroup(s, MicroProfileTokenTypeGpu)
#define MICROPROFILE_INVALID_TICK ((uint64_t)-1)
#define MICROPROFILE_GROUP_MASK_ALL 0xffffffffffff
#define MICROPROFILE_INVALID_TOKEN (uint64_t)-1
enum MicroProfileTokenType
{
MicroProfileTokenTypeCpu,
MicroProfileTokenTypeGpu,
};
enum MicroProfileBoxType
{
MicroProfileBoxTypeBar,
MicroProfileBoxTypeFlat,
};
struct MicroProfile;
MICROPROFILE_API void MicroProfileInit();
MICROPROFILE_API void MicroProfileShutdown();
MICROPROFILE_API MicroProfileToken MicroProfileFindToken(const char* sGroup, const char* sName);
MICROPROFILE_API MicroProfileToken MicroProfileGetToken(const char* sGroup, const char* sName, uint32_t nColor, MicroProfileTokenType Token = MicroProfileTokenTypeCpu);
MICROPROFILE_API MicroProfileToken MicroProfileGetMetaToken(const char* pName);
MICROPROFILE_API void MicroProfileMetaUpdate(MicroProfileToken, int nCount, MicroProfileTokenType eTokenType);
MICROPROFILE_API uint64_t MicroProfileEnter(MicroProfileToken nToken);
MICROPROFILE_API void MicroProfileLeave(MicroProfileToken nToken, uint64_t nTick);
MICROPROFILE_API uint64_t MicroProfileGpuEnter(MicroProfileToken nToken);
MICROPROFILE_API void MicroProfileGpuLeave(MicroProfileToken nToken, uint64_t nTick);
inline uint16_t MicroProfileGetTimerIndex(MicroProfileToken t){ return (t&0xffff); }
inline uint64_t MicroProfileGetGroupMask(MicroProfileToken t){ return ((t>>16)&MICROPROFILE_GROUP_MASK_ALL);}
inline MicroProfileToken MicroProfileMakeToken(uint64_t nGroupMask, uint16_t nTimer){ return (nGroupMask<<16) | nTimer;}
MICROPROFILE_API void MicroProfileFlip(); //! call once per frame.
MICROPROFILE_API void MicroProfileTogglePause();
MICROPROFILE_API void MicroProfileForceEnableGroup(const char* pGroup, MicroProfileTokenType Type);
MICROPROFILE_API void MicroProfileForceDisableGroup(const char* pGroup, MicroProfileTokenType Type);
MICROPROFILE_API float MicroProfileGetTime(const char* pGroup, const char* pName);
MICROPROFILE_API void MicroProfileContextSwitchSearch(uint32_t* pContextSwitchStart, uint32_t* pContextSwitchEnd, uint64_t nBaseTicksCpu, uint64_t nBaseTicksEndCpu);
MICROPROFILE_API void MicroProfileOnThreadCreate(const char* pThreadName); //should be called from newly created threads
MICROPROFILE_API void MicroProfileOnThreadExit(); //call on exit to reuse log
MICROPROFILE_API void MicroProfileInitThreadLog();
MICROPROFILE_API void MicroProfileSetForceEnable(bool bForceEnable);
MICROPROFILE_API bool MicroProfileGetForceEnable();
MICROPROFILE_API void MicroProfileSetEnableAllGroups(bool bEnable);
MICROPROFILE_API void MicroProfileEnableCategory(const char* pCategory);
MICROPROFILE_API void MicroProfileDisableCategory(const char* pCategory);
MICROPROFILE_API bool MicroProfileGetEnableAllGroups();
MICROPROFILE_API void MicroProfileSetForceMetaCounters(bool bEnable);
MICROPROFILE_API bool MicroProfileGetForceMetaCounters();
MICROPROFILE_API void MicroProfileEnableMetaCounter(const char* pMet);
MICROPROFILE_API void MicroProfileDisableMetaCounter(const char* pMet);
MICROPROFILE_API void MicroProfileSetAggregateFrames(int frames);
MICROPROFILE_API int MicroProfileGetAggregateFrames();
MICROPROFILE_API int MicroProfileGetCurrentAggregateFrames();
MICROPROFILE_API MicroProfile* MicroProfileGet();
MICROPROFILE_API void MicroProfileGetRange(uint32_t nPut, uint32_t nGet, uint32_t nRange[2][2]);
MICROPROFILE_API std::recursive_mutex& MicroProfileGetMutex();
MICROPROFILE_API void MicroProfileStartContextSwitchTrace();
MICROPROFILE_API void MicroProfileStopContextSwitchTrace();
MICROPROFILE_API bool MicroProfileIsLocalThread(uint32_t nThreadId);
#if MICROPROFILE_WEBSERVER
MICROPROFILE_API void MicroProfileDumpFile(const char* pHtml, const char* pCsv);
MICROPROFILE_API uint32_t MicroProfileWebServerPort();
#else
#define MicroProfileDumpFile(c) do{} while(0)
#define MicroProfileWebServerPort() ((uint32_t)-1)
#endif
#if MICROPROFILE_GPU_TIMERS
MICROPROFILE_API uint32_t MicroProfileGpuInsertTimeStamp();
MICROPROFILE_API uint64_t MicroProfileGpuGetTimeStamp(uint32_t nKey);
MICROPROFILE_API uint64_t MicroProfileTicksPerSecondGpu();
MICROPROFILE_API int MicroProfileGetGpuTickReference(int64_t* pOutCPU, int64_t* pOutGpu);
#else
#define MicroProfileGpuInsertTimeStamp() 1
#define MicroProfileGpuGetTimeStamp(a) 0
#define MicroProfileTicksPerSecondGpu() 1
#define MicroProfileGetGpuTickReference(a,b) 0
#endif
#if MICROPROFILE_GPU_TIMERS_D3D11
#define MICROPROFILE_D3D_MAX_QUERIES (8<<10)
MICROPROFILE_API void MicroProfileGpuInitD3D11(void* pDevice, void* pDeviceContext);
#endif
#if MICROPROFILE_GPU_TIMERS_GL
#define MICROPROFILE_GL_MAX_QUERIES (8<<10)
MICROPROFILE_API void MicroProfileGpuInitGL();
#endif
#if MICROPROFILE_USE_THREAD_NAME_CALLBACK
MICROPROFILE_API const char* MicroProfileGetThreadName();
#else
#define MicroProfileGetThreadName() "<implement MicroProfileGetThreadName to get threadnames>"
#endif
#if !defined(MICROPROFILE_THREAD_NAME_FROM_ID)
#define MICROPROFILE_THREAD_NAME_FROM_ID(a) ""
#endif
struct MicroProfileScopeHandler
{
MicroProfileToken nToken;
uint64_t nTick;
MicroProfileScopeHandler(MicroProfileToken Token):nToken(Token)
{
nTick = MicroProfileEnter(nToken);
}
~MicroProfileScopeHandler()
{
MicroProfileLeave(nToken, nTick);
}
};
struct MicroProfileScopeGpuHandler
{
MicroProfileToken nToken;
uint64_t nTick;
MicroProfileScopeGpuHandler(MicroProfileToken Token):nToken(Token)
{
nTick = MicroProfileGpuEnter(nToken);
}
~MicroProfileScopeGpuHandler()
{
MicroProfileGpuLeave(nToken, nTick);
}
};
#define MICROPROFILE_MAX_TIMERS 1024
#define MICROPROFILE_MAX_GROUPS 48 //dont bump! no. of bits used it bitmask
#define MICROPROFILE_MAX_CATEGORIES 16
#define MICROPROFILE_MAX_GRAPHS 5
#define MICROPROFILE_GRAPH_HISTORY 128
#define MICROPROFILE_BUFFER_SIZE ((MICROPROFILE_PER_THREAD_BUFFER_SIZE)/sizeof(MicroProfileLogEntry))
#define MICROPROFILE_MAX_CONTEXT_SWITCH_THREADS 256
#define MICROPROFILE_STACK_MAX 32
//#define MICROPROFILE_MAX_PRESETS 5
#define MICROPROFILE_ANIM_DELAY_PRC 0.5f
#define MICROPROFILE_GAP_TIME 50 //extra ms to fetch to close timers from earlier frames
#ifndef MICROPROFILE_MAX_THREADS
#define MICROPROFILE_MAX_THREADS 32
#endif
#ifndef MICROPROFILE_UNPACK_RED
#define MICROPROFILE_UNPACK_RED(c) ((c)>>16)
#endif
#ifndef MICROPROFILE_UNPACK_GREEN
#define MICROPROFILE_UNPACK_GREEN(c) ((c)>>8)
#endif
#ifndef MICROPROFILE_UNPACK_BLUE
#define MICROPROFILE_UNPACK_BLUE(c) ((c))
#endif
#ifndef MICROPROFILE_DEFAULT_PRESET
#define MICROPROFILE_DEFAULT_PRESET "Default"
#endif
#ifndef MICROPROFILE_CONTEXT_SWITCH_TRACE
#if defined(_WIN32)
#define MICROPROFILE_CONTEXT_SWITCH_TRACE 1
#elif defined(__APPLE__)
#define MICROPROFILE_CONTEXT_SWITCH_TRACE 0 //disabled until dtrace script is working.
#else
#define MICROPROFILE_CONTEXT_SWITCH_TRACE 0
#endif
#endif
#if MICROPROFILE_CONTEXT_SWITCH_TRACE
#define MICROPROFILE_CONTEXT_SWITCH_BUFFER_SIZE (128*1024) //2mb with 16 byte entry size
#else
#define MICROPROFILE_CONTEXT_SWITCH_BUFFER_SIZE (1)
#endif
#ifndef MICROPROFILE_MINIZ
#define MICROPROFILE_MINIZ 0
#endif
#ifdef _WIN32
#include <basetsd.h>
typedef UINT_PTR MpSocket;
#else
typedef int MpSocket;
#endif
#ifndef _WIN32
typedef pthread_t MicroProfileThread;
2016-08-01 17:13:35 -04:00
#elif defined(_MSC_VER)
typedef HANDLE MicroProfileThread;
#else
typedef std::thread* MicroProfileThread;
#endif
enum MicroProfileDrawMask
{
MP_DRAW_OFF = 0x0,
MP_DRAW_BARS = 0x1,
MP_DRAW_DETAILED = 0x2,
MP_DRAW_HIDDEN = 0x3,
};
enum MicroProfileDrawBarsMask
{
MP_DRAW_TIMERS = 0x1,
MP_DRAW_AVERAGE = 0x2,
MP_DRAW_MAX = 0x4,
MP_DRAW_CALL_COUNT = 0x8,
MP_DRAW_TIMERS_EXCLUSIVE = 0x10,
MP_DRAW_AVERAGE_EXCLUSIVE = 0x20,
MP_DRAW_MAX_EXCLUSIVE = 0x40,
MP_DRAW_META_FIRST = 0x80,
MP_DRAW_ALL = 0xffffffff,
};
typedef uint64_t MicroProfileLogEntry;
struct MicroProfileTimer
{
uint64_t nTicks;
uint32_t nCount;
};
struct MicroProfileCategory
{
char pName[MICROPROFILE_NAME_MAX_LEN];
uint64_t nGroupMask;
};
struct MicroProfileGroupInfo
{
char pName[MICROPROFILE_NAME_MAX_LEN];
uint32_t nNameLen;
uint32_t nGroupIndex;
uint32_t nNumTimers;
uint32_t nMaxTimerNameLen;
uint32_t nColor;
uint32_t nCategory;
MicroProfileTokenType Type;
};
struct MicroProfileTimerInfo
{
MicroProfileToken nToken;
uint32_t nTimerIndex;
uint32_t nGroupIndex;
char pName[MICROPROFILE_NAME_MAX_LEN];
uint32_t nNameLen;
uint32_t nColor;
bool bGraph;
};
struct MicroProfileGraphState
{
int64_t nHistory[MICROPROFILE_GRAPH_HISTORY];
MicroProfileToken nToken;
int32_t nKey;
};
struct MicroProfileContextSwitch
{
ThreadIdType nThreadOut;
ThreadIdType nThreadIn;
int64_t nCpu : 8;
int64_t nTicks : 56;
};
struct MicroProfileFrameState
{
int64_t nFrameStartCpu;
int64_t nFrameStartGpu;
uint32_t nLogStart[MICROPROFILE_MAX_THREADS];
};
struct MicroProfileThreadLog
{
std::array<MicroProfileLogEntry, MICROPROFILE_BUFFER_SIZE> Log{};
std::atomic<uint32_t> nPut{0};
std::atomic<uint32_t> nGet{0};
uint32_t nActive = 0;
uint32_t nGpu = 0;
ThreadIdType nThreadId{};
std::array<uint32_t, MICROPROFILE_STACK_MAX> nStack{};
std::array<int64_t, MICROPROFILE_STACK_MAX> nChildTickStack{};
uint32_t nStackPos = 0;
std::array<uint8_t, MICROPROFILE_MAX_GROUPS> nGroupStackPos{};
std::array<int64_t, MICROPROFILE_MAX_GROUPS> nGroupTicks{};
std::array<int64_t, MICROPROFILE_MAX_GROUPS> nAggregateGroupTicks{};
enum
{
THREAD_MAX_LEN = 64,
};
char ThreadName[64]{};
int nFreeListNext = 0;
void Reset() {
Log.fill({});
nPut = 0;
nGet = 0;
nActive = 0;
nGpu = 0;
nThreadId = {};
nStack.fill(0);
nChildTickStack.fill(0);
nStackPos = 0;
nGroupStackPos.fill(0);
nGroupTicks.fill(0);
nAggregateGroupTicks.fill(0);
std::fill(std::begin(ThreadName), std::end(ThreadName), '\0');
nFreeListNext = 0;
}
};
#if MICROPROFILE_GPU_TIMERS_D3D11
struct MicroProfileD3D11Frame
{
uint32_t m_nQueryStart;
uint32_t m_nQueryCount;
uint32_t m_nRateQueryStarted;
void* m_pRateQuery;
};
struct MicroProfileGpuTimerState
{
uint32_t bInitialized;
void* m_pDevice;
void* m_pDeviceContext;
void* m_pQueries[MICROPROFILE_D3D_MAX_QUERIES];
int64_t m_nQueryResults[MICROPROFILE_D3D_MAX_QUERIES];
uint32_t m_nQueryPut;
uint32_t m_nQueryGet;
uint32_t m_nQueryFrame;
int64_t m_nQueryFrequency;
MicroProfileD3D11Frame m_QueryFrames[MICROPROFILE_GPU_FRAME_DELAY];
};
#elif MICROPROFILE_GPU_TIMERS_GL
struct MicroProfileGpuTimerState
{
uint32_t GLTimers[MICROPROFILE_GL_MAX_QUERIES];
uint32_t GLTimerPos;
};
#else
struct MicroProfileGpuTimerState{};
#endif
struct MicroProfile
{
uint32_t nTotalTimers;
uint32_t nGroupCount;
uint32_t nCategoryCount;
uint32_t nAggregateClear;
uint32_t nAggregateFlip;
uint32_t nAggregateFlipCount;
uint32_t nAggregateFrames;
uint64_t nAggregateFlipTick;
uint32_t nDisplay;
uint32_t nBars;
uint64_t nActiveGroup;
uint32_t nActiveBars;
uint64_t nForceGroup;
uint32_t nForceEnable;
uint32_t nForceMetaCounters;
uint64_t nForceGroupUI;
uint64_t nActiveGroupWanted;
uint32_t nAllGroupsWanted;
uint32_t nAllThreadsWanted;
uint32_t nOverflow;
uint64_t nGroupMask;
uint32_t nRunning;
uint32_t nToggleRunning;
uint32_t nMaxGroupSize;
uint32_t nDumpFileNextFrame;
uint32_t nAutoClearFrames;
char HtmlDumpPath[512];
char CsvDumpPath[512];
int64_t nPauseTicks;
float fReferenceTime;
float fRcpReferenceTime;
MicroProfileCategory CategoryInfo[MICROPROFILE_MAX_CATEGORIES];
MicroProfileGroupInfo GroupInfo[MICROPROFILE_MAX_GROUPS];
MicroProfileTimerInfo TimerInfo[MICROPROFILE_MAX_TIMERS];
uint8_t TimerToGroup[MICROPROFILE_MAX_TIMERS];
MicroProfileTimer AccumTimers[MICROPROFILE_MAX_TIMERS];
uint64_t AccumMaxTimers[MICROPROFILE_MAX_TIMERS];
uint64_t AccumTimersExclusive[MICROPROFILE_MAX_TIMERS];
uint64_t AccumMaxTimersExclusive[MICROPROFILE_MAX_TIMERS];
MicroProfileTimer Frame[MICROPROFILE_MAX_TIMERS];
uint64_t FrameExclusive[MICROPROFILE_MAX_TIMERS];
MicroProfileTimer Aggregate[MICROPROFILE_MAX_TIMERS];
uint64_t AggregateMax[MICROPROFILE_MAX_TIMERS];
uint64_t AggregateExclusive[MICROPROFILE_MAX_TIMERS];
uint64_t AggregateMaxExclusive[MICROPROFILE_MAX_TIMERS];
uint64_t FrameGroup[MICROPROFILE_MAX_GROUPS];
uint64_t AccumGroup[MICROPROFILE_MAX_GROUPS];
uint64_t AccumGroupMax[MICROPROFILE_MAX_GROUPS];
uint64_t AggregateGroup[MICROPROFILE_MAX_GROUPS];
uint64_t AggregateGroupMax[MICROPROFILE_MAX_GROUPS];
struct
{
uint64_t nCounters[MICROPROFILE_MAX_TIMERS];
uint64_t nAccum[MICROPROFILE_MAX_TIMERS];
uint64_t nAccumMax[MICROPROFILE_MAX_TIMERS];
uint64_t nAggregate[MICROPROFILE_MAX_TIMERS];
uint64_t nAggregateMax[MICROPROFILE_MAX_TIMERS];
uint64_t nSum;
uint64_t nSumAccum;
uint64_t nSumAccumMax;
uint64_t nSumAggregate;
uint64_t nSumAggregateMax;
const char* pName;
} MetaCounters[MICROPROFILE_META_MAX];
MicroProfileGraphState Graph[MICROPROFILE_MAX_GRAPHS];
uint32_t nGraphPut;
uint32_t nThreadActive[MICROPROFILE_MAX_THREADS];
MicroProfileThreadLog* Pool[MICROPROFILE_MAX_THREADS];
uint32_t nNumLogs;
uint32_t nMemUsage;
int nFreeListHead;
uint32_t nFrameCurrent;
uint32_t nFrameCurrentIndex;
uint32_t nFramePut;
uint64_t nFramePutIndex;
MicroProfileFrameState Frames[MICROPROFILE_MAX_FRAME_HISTORY];
uint64_t nFlipTicks;
uint64_t nFlipAggregate;
uint64_t nFlipMax;
uint64_t nFlipAggregateDisplay;
uint64_t nFlipMaxDisplay;
MicroProfileThread ContextSwitchThread;
bool bContextSwitchRunning;
bool bContextSwitchStop;
bool bContextSwitchAllThreads;
bool bContextSwitchNoBars;
uint32_t nContextSwitchUsage;
uint32_t nContextSwitchLastPut;
int64_t nContextSwitchHoverTickIn;
int64_t nContextSwitchHoverTickOut;
uint32_t nContextSwitchHoverThread;
uint32_t nContextSwitchHoverThreadBefore;
uint32_t nContextSwitchHoverThreadAfter;
uint8_t nContextSwitchHoverCpu;
uint8_t nContextSwitchHoverCpuNext;
uint32_t nContextSwitchPut;
MicroProfileContextSwitch ContextSwitch[MICROPROFILE_CONTEXT_SWITCH_BUFFER_SIZE];
MpSocket ListenerSocket;
uint32_t nWebServerPort;
char WebServerBuffer[MICROPROFILE_WEBSERVER_SOCKET_BUFFER_SIZE];
uint32_t WebServerPut;
uint64_t nWebServerDataSent;
MicroProfileGpuTimerState GPU;
};
#define MP_LOG_TICK_MASK 0x0000ffffffffffff
#define MP_LOG_INDEX_MASK 0x3fff000000000000
#define MP_LOG_BEGIN_MASK 0xc000000000000000
#define MP_LOG_GPU_EXTRA 0x3
#define MP_LOG_META 0x2
#define MP_LOG_ENTER 0x1
#define MP_LOG_LEAVE 0x0
inline int MicroProfileLogType(MicroProfileLogEntry Index)
{
return (int)(((MP_LOG_BEGIN_MASK & Index)>>62) & 0x3ULL);
}
inline uint64_t MicroProfileLogTimerIndex(MicroProfileLogEntry Index)
{
return (0x3fff&(Index>>48));
}
inline MicroProfileLogEntry MicroProfileMakeLogIndex(uint64_t nBegin, MicroProfileToken nToken, int64_t nTick)
{
MicroProfileLogEntry Entry = (nBegin<<62) | ((0x3fff&nToken)<<48) | (MP_LOG_TICK_MASK&nTick);
int t = MicroProfileLogType(Entry);
uint64_t nTimerIndex = MicroProfileLogTimerIndex(Entry);
MP_ASSERT((uint64_t)t == nBegin);
MP_ASSERT(nTimerIndex == (nToken&0x3fff));
return Entry;
}
inline int64_t MicroProfileLogTickDifference(MicroProfileLogEntry Start, MicroProfileLogEntry End)
{
uint64_t nStart = Start;
uint64_t nEnd = End;
2020-10-20 22:07:39 -04:00
int64_t nDifference = ((nEnd<<16) - (nStart<<16));
return nDifference >> 16;
}
inline int64_t MicroProfileLogGetTick(MicroProfileLogEntry e)
{
return MP_LOG_TICK_MASK & e;
}
inline int64_t MicroProfileLogSetTick(MicroProfileLogEntry e, int64_t nTick)
{
2020-10-20 22:07:39 -04:00
return (MP_LOG_TICK_MASK & nTick) | (e & ~MP_LOG_TICK_MASK);
}
template<typename T>
T MicroProfileMin(T a, T b)
{ return a < b ? a : b; }
template<typename T>
T MicroProfileMax(T a, T b)
{ return a > b ? a : b; }
inline int64_t MicroProfileMsToTick(float fMs, int64_t nTicksPerSecond)
{
return (int64_t)(fMs*0.001f*(float)nTicksPerSecond);
}
inline float MicroProfileTickToMsMultiplier(int64_t nTicksPerSecond)
{
return 1000.f / (float)nTicksPerSecond;
}
inline uint16_t MicroProfileGetGroupIndex(MicroProfileToken t)
{
return (uint16_t)MicroProfileGet()->TimerToGroup[MicroProfileGetTimerIndex(t)];
}
#ifdef MICROPROFILE_IMPL
#ifdef _WIN32
#include <windows.h>
#define snprintf _snprintf
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable: 4244)
#endif
int64_t MicroProfileTicksPerSecondCpu()
{
static int64_t nTicksPerSecond = 0;
if(nTicksPerSecond == 0)
{
QueryPerformanceFrequency((LARGE_INTEGER*)&nTicksPerSecond);
}
return nTicksPerSecond;
}
int64_t MicroProfileGetTick()
{
int64_t ticks;
QueryPerformanceCounter((LARGE_INTEGER*)&ticks);
return ticks;
}
#endif
#if defined(MICROPROFILE_WEBSERVER) || defined(MICROPROFILE_CONTEXT_SWITCH_TRACE)
typedef void* (*MicroProfileThreadFunc)(void*);
#ifndef _WIN32
typedef pthread_t MicroProfileThread;
inline void MicroProfileThreadStart(MicroProfileThread* pThread, MicroProfileThreadFunc Func)
{
pthread_attr_t Attr;
int r = pthread_attr_init(&Attr);
MP_ASSERT(r == 0);
pthread_create(pThread, &Attr, Func, 0);
}
inline void MicroProfileThreadJoin(MicroProfileThread* pThread)
{
int r = pthread_join(*pThread, 0);
MP_ASSERT(r == 0);
}
2016-08-01 17:13:35 -04:00
#elif defined(_MSC_VER)
typedef HANDLE MicroProfileThread;
DWORD _stdcall ThreadTrampoline(void* pFunc)
{
MicroProfileThreadFunc F = (MicroProfileThreadFunc)pFunc;
// The return value of F will always return a void*, however, this is for
// compatibility with pthreads. The underlying "address" of the pointer
// is always a 32-bit value, so this cast is safe to perform.
return static_cast<DWORD>(reinterpret_cast<uint64_t>(F(0)));
}
inline void MicroProfileThreadStart(MicroProfileThread* pThread, MicroProfileThreadFunc Func)
{
*pThread = CreateThread(0, 0, ThreadTrampoline, Func, 0, 0);
}
inline void MicroProfileThreadJoin(MicroProfileThread* pThread)
{
WaitForSingleObject(*pThread, INFINITE);
CloseHandle(*pThread);
}
#else
#include <thread>
typedef std::thread* MicroProfileThread;
inline void MicroProfileThreadStart(MicroProfileThread* pThread, MicroProfileThreadFunc Func)
{
*pThread = new std::thread(Func, nullptr);
}
inline void MicroProfileThreadJoin(MicroProfileThread* pThread)
{
(*pThread)->join();
delete *pThread;
}
#endif
#endif
#if MICROPROFILE_WEBSERVER
#ifdef _WIN32
#define MP_INVALID_SOCKET(f) (f == INVALID_SOCKET)
#endif
#ifndef _WIN32
#include <sys/socket.h>
#include <netinet/in.h>
#include <fcntl.h>
#define MP_INVALID_SOCKET(f) (f < 0)
#endif
void MicroProfileWebServerStart();
void MicroProfileWebServerStop();
bool MicroProfileWebServerUpdate();
void MicroProfileDumpToFile();
#else
#define MicroProfileWebServerStart() do{}while(0)
#define MicroProfileWebServerStop() do{}while(0)
#define MicroProfileWebServerUpdate() false
#define MicroProfileDumpToFile() do{} while(0)
#endif
#if MICROPROFILE_GPU_TIMERS_D3D11
void MicroProfileGpuFlip();
void MicroProfileGpuShutdown();
#else
#define MicroProfileGpuFlip() do{}while(0)
#define MicroProfileGpuShutdown() do{}while(0)
#endif
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <algorithm>
#ifndef MICROPROFILE_DEBUG
#define MICROPROFILE_DEBUG 0
#endif
#define S g_MicroProfile
MicroProfile g_MicroProfile;
MicroProfileThreadLog* g_MicroProfileGpuLog = 0;
#ifdef MICROPROFILE_IOS
// iOS doesn't support __thread
static pthread_key_t g_MicroProfileThreadLogKey;
static pthread_once_t g_MicroProfileThreadLogKeyOnce = PTHREAD_ONCE_INIT;
static void MicroProfileCreateThreadLogKey()
{
pthread_key_create(&g_MicroProfileThreadLogKey, NULL);
}
#else
MP_THREAD_LOCAL MicroProfileThreadLog* g_MicroProfileThreadLog = 0;
#endif
static std::atomic<bool> g_bUseLock{false}; /// This is used because windows does not support using mutexes under dll init(which is where global initialization is handled)
MICROPROFILE_DEFINE(g_MicroProfileFlip, "MicroProfile", "MicroProfileFlip", 0x3355ee);
MICROPROFILE_DEFINE(g_MicroProfileThreadLoop, "MicroProfile", "ThreadLoop", 0x3355ee);
MICROPROFILE_DEFINE(g_MicroProfileClear, "MicroProfile", "Clear", 0x3355ee);
MICROPROFILE_DEFINE(g_MicroProfileAccumulate, "MicroProfile", "Accumulate", 0x3355ee);
MICROPROFILE_DEFINE(g_MicroProfileContextSwitchSearch,"MicroProfile", "ContextSwitchSearch", 0xDD7300);
inline std::recursive_mutex& MicroProfileMutex()
{
static std::recursive_mutex Mutex;
return Mutex;
}
std::recursive_mutex& MicroProfileGetMutex()
{
return MicroProfileMutex();
}
MICROPROFILE_API MicroProfile* MicroProfileGet()
{
return &g_MicroProfile;
}
MicroProfileThreadLog* MicroProfileCreateThreadLog(const char* pName);
void MicroProfileInit()
{
std::recursive_mutex& mutex = MicroProfileMutex();
bool bUseLock = g_bUseLock;
if(bUseLock)
mutex.lock();
static bool bOnce = true;
if(bOnce)
{
S.nMemUsage += sizeof(S);
bOnce = false;
memset(&S, 0, sizeof(S));
for(int i = 0; i < MICROPROFILE_MAX_GROUPS; ++i)
{
S.GroupInfo[i].pName[0] = '\0';
}
for(int i = 0; i < MICROPROFILE_MAX_CATEGORIES; ++i)
{
S.CategoryInfo[i].pName[0] = '\0';
S.CategoryInfo[i].nGroupMask = 0;
}
strcpy(&S.CategoryInfo[0].pName[0], "default");
S.nCategoryCount = 1;
for(int i = 0; i < MICROPROFILE_MAX_TIMERS; ++i)
{
S.TimerInfo[i].pName[0] = '\0';
}
S.nGroupCount = 0;
S.nAggregateFlipTick = MP_TICK();
S.nActiveGroup = 0;
S.nActiveBars = 0;
S.nForceGroup = 0;
S.nAllGroupsWanted = 0;
S.nActiveGroupWanted = 0;
S.nAllThreadsWanted = 1;
S.nAggregateFlip = 0;
S.nTotalTimers = 0;
for(uint32_t i = 0; i < MICROPROFILE_MAX_GRAPHS; ++i)
{
S.Graph[i].nToken = MICROPROFILE_INVALID_TOKEN;
}
S.nRunning = 1;
S.fReferenceTime = 33.33f;
S.fRcpReferenceTime = 1.f / S.fReferenceTime;
S.nFreeListHead = -1;
int64_t nTick = MP_TICK();
for(int i = 0; i < MICROPROFILE_MAX_FRAME_HISTORY; ++i)
{
S.Frames[i].nFrameStartCpu = nTick;
S.Frames[i].nFrameStartGpu = -1;
}
MicroProfileThreadLog* pGpu = MicroProfileCreateThreadLog("GPU");
g_MicroProfileGpuLog = pGpu;
MP_ASSERT(S.Pool[0] == pGpu);
pGpu->nGpu = 1;
pGpu->nThreadId = 0;
S.nWebServerDataSent = (uint64_t)-1;
}
if(bUseLock)
mutex.unlock();
}
void MicroProfileShutdown()
{
std::lock_guard<std::recursive_mutex> Lock(MicroProfileMutex());
MicroProfileWebServerStop();
MicroProfileStopContextSwitchTrace();
MicroProfileGpuShutdown();
}
#ifdef MICROPROFILE_IOS
inline MicroProfileThreadLog* MicroProfileGetThreadLog()
{
pthread_once(&g_MicroProfileThreadLogKeyOnce, MicroProfileCreateThreadLogKey);
return (MicroProfileThreadLog*)pthread_getspecific(g_MicroProfileThreadLogKey);
}
inline void MicroProfileSetThreadLog(MicroProfileThreadLog* pLog)
{
pthread_once(&g_MicroProfileThreadLogKeyOnce, MicroProfileCreateThreadLogKey);
pthread_setspecific(g_MicroProfileThreadLogKey, pLog);
}
#else
inline MicroProfileThreadLog* MicroProfileGetThreadLog()
{
return g_MicroProfileThreadLog;
}
inline void MicroProfileSetThreadLog(MicroProfileThreadLog* pLog)
{
g_MicroProfileThreadLog = pLog;
}
#endif
MicroProfileThreadLog* MicroProfileCreateThreadLog(const char* pName)
{
MicroProfileThreadLog* pLog = 0;
if(S.nFreeListHead != -1)
{
pLog = S.Pool[S.nFreeListHead];
MP_ASSERT(pLog->nPut.load() == 0);
MP_ASSERT(pLog->nGet.load() == 0);
S.nFreeListHead = S.Pool[S.nFreeListHead]->nFreeListNext;
pLog->Reset();
}
else
{
pLog = new MicroProfileThreadLog;
S.nMemUsage += sizeof(MicroProfileThreadLog);
S.Pool[S.nNumLogs++] = pLog;
}
int len = (int)strlen(pName);
int maxlen = sizeof(pLog->ThreadName)-1;
len = len < maxlen ? len : maxlen;
memcpy(&pLog->ThreadName[0], pName, len);
pLog->ThreadName[len] = '\0';
pLog->nThreadId = MP_GETCURRENTTHREADID();
pLog->nFreeListNext = -1;
pLog->nActive = 1;
return pLog;
}
void MicroProfileOnThreadCreate(const char* pThreadName)
{
g_bUseLock = true;
MicroProfileInit();
std::lock_guard<std::recursive_mutex> Lock(MicroProfileMutex());
MP_ASSERT(MicroProfileGetThreadLog() == 0);
MicroProfileThreadLog* pLog = MicroProfileCreateThreadLog(pThreadName ? pThreadName : MicroProfileGetThreadName());
MP_ASSERT(pLog);
MicroProfileSetThreadLog(pLog);
}
void MicroProfileOnThreadExit()
{
std::lock_guard<std::recursive_mutex> Lock(MicroProfileMutex());
MicroProfileThreadLog* pLog = MicroProfileGetThreadLog();
if(pLog)
{
int32_t nLogIndex = -1;
for(int i = 0; i < MICROPROFILE_MAX_THREADS; ++i)
{
if(pLog == S.Pool[i])
{
nLogIndex = i;
break;
}
}
MP_ASSERT(nLogIndex < MICROPROFILE_MAX_THREADS && nLogIndex > 0);
pLog->nFreeListNext = S.nFreeListHead;
pLog->nActive = 0;
pLog->nPut.store(0);
pLog->nGet.store(0);
S.nFreeListHead = nLogIndex;
for(int i = 0; i < MICROPROFILE_MAX_FRAME_HISTORY; ++i)
{
S.Frames[i].nLogStart[nLogIndex] = 0;
}
pLog->nGroupStackPos.fill(0);
pLog->nGroupTicks.fill(0);
}
}
void MicroProfileInitThreadLog()
{
MicroProfileOnThreadCreate(nullptr);
}
struct MicroProfileScopeLock
{
bool bUseLock;
std::recursive_mutex& m;
MicroProfileScopeLock(std::recursive_mutex& m_) : bUseLock(g_bUseLock), m(m_)
{
if(bUseLock)
m.lock();
}
~MicroProfileScopeLock()
{
if(bUseLock)
m.unlock();
}
};
MicroProfileToken MicroProfileFindToken(const char* pGroup, const char* pName)
{
MicroProfileInit();
MicroProfileScopeLock L(MicroProfileMutex());
for(uint32_t i = 0; i < S.nTotalTimers; ++i)
{
if(!MP_STRCASECMP(pName, S.TimerInfo[i].pName) && !MP_STRCASECMP(pGroup, S.GroupInfo[S.TimerToGroup[i]].pName))
{
return S.TimerInfo[i].nToken;
}
}
return MICROPROFILE_INVALID_TOKEN;
}
inline uint16_t MicroProfileGetGroup(const char* pGroup, MicroProfileTokenType Type)
{
for(uint32_t i = 0; i < S.nGroupCount; ++i)
{
if(!MP_STRCASECMP(pGroup, S.GroupInfo[i].pName))
{
return i;
}
}
uint16_t nGroupIndex = 0xffff;
uint32_t nLen = (uint32_t)strlen(pGroup);
if(nLen > MICROPROFILE_NAME_MAX_LEN-1)
nLen = MICROPROFILE_NAME_MAX_LEN-1;
memcpy(&S.GroupInfo[S.nGroupCount].pName[0], pGroup, nLen);
S.GroupInfo[S.nGroupCount].pName[nLen] = '\0';
S.GroupInfo[S.nGroupCount].nNameLen = nLen;
S.GroupInfo[S.nGroupCount].nNumTimers = 0;
S.GroupInfo[S.nGroupCount].nGroupIndex = S.nGroupCount;
S.GroupInfo[S.nGroupCount].Type = Type;
S.GroupInfo[S.nGroupCount].nMaxTimerNameLen = 0;
S.GroupInfo[S.nGroupCount].nColor = 0x88888888;
S.GroupInfo[S.nGroupCount].nCategory = 0;
S.CategoryInfo[0].nGroupMask |= (1ll << (uint64_t)S.nGroupCount);
nGroupIndex = S.nGroupCount++;
S.nGroupMask = (S.nGroupMask<<1)|1;
MP_ASSERT(nGroupIndex < MICROPROFILE_MAX_GROUPS);
return nGroupIndex;
}
inline void MicroProfileRegisterGroup(const char* pGroup, const char* pCategory, uint32_t nColor)
{
int nCategoryIndex = -1;
for(uint32_t i = 0; i < S.nCategoryCount; ++i)
{
if(!MP_STRCASECMP(pCategory, S.CategoryInfo[i].pName))
{
nCategoryIndex = (int)i;
break;
}
}
if(-1 == nCategoryIndex && S.nCategoryCount < MICROPROFILE_MAX_CATEGORIES)
{
MP_ASSERT(S.CategoryInfo[S.nCategoryCount].pName[0] == '\0');
nCategoryIndex = (int)S.nCategoryCount++;
uint32_t nLen = (uint32_t)strlen(pCategory);
if(nLen > MICROPROFILE_NAME_MAX_LEN-1)
nLen = MICROPROFILE_NAME_MAX_LEN-1;
memcpy(&S.CategoryInfo[nCategoryIndex].pName[0], pCategory, nLen);
S.CategoryInfo[nCategoryIndex].pName[nLen] = '\0';
}
uint16_t nGroup = MicroProfileGetGroup(pGroup, 0 != MP_STRCASECMP(pGroup, "gpu")?MicroProfileTokenTypeCpu : MicroProfileTokenTypeGpu);
S.GroupInfo[nGroup].nColor = nColor;
if(nCategoryIndex >= 0)
{
uint64_t nBit = 1ll << nGroup;
uint32_t nOldCategory = S.GroupInfo[nGroup].nCategory;
S.CategoryInfo[nOldCategory].nGroupMask &= ~nBit;
S.CategoryInfo[nCategoryIndex].nGroupMask |= nBit;
S.GroupInfo[nGroup].nCategory = nCategoryIndex;
}
}
MicroProfileToken MicroProfileGetToken(const char* pGroup, const char* pName, uint32_t nColor, MicroProfileTokenType Type)
{
MicroProfileInit();
MicroProfileScopeLock L(MicroProfileMutex());
MicroProfileToken ret = MicroProfileFindToken(pGroup, pName);
if(ret != MICROPROFILE_INVALID_TOKEN)
return ret;
uint16_t nGroupIndex = MicroProfileGetGroup(pGroup, Type);
uint16_t nTimerIndex = (uint16_t)(S.nTotalTimers++);
uint64_t nGroupMask = 1ll << nGroupIndex;
MicroProfileToken nToken = MicroProfileMakeToken(nGroupMask, nTimerIndex);
S.GroupInfo[nGroupIndex].nNumTimers++;
S.GroupInfo[nGroupIndex].nMaxTimerNameLen = MicroProfileMax(S.GroupInfo[nGroupIndex].nMaxTimerNameLen, (uint32_t)strlen(pName));
MP_ASSERT(S.GroupInfo[nGroupIndex].Type == Type); //dont mix cpu & gpu timers in the same group
S.nMaxGroupSize = MicroProfileMax(S.nMaxGroupSize, S.GroupInfo[nGroupIndex].nNumTimers);
S.TimerInfo[nTimerIndex].nToken = nToken;
uint32_t nLen = (uint32_t)strlen(pName);
if(nLen > MICROPROFILE_NAME_MAX_LEN-1)
nLen = MICROPROFILE_NAME_MAX_LEN-1;
memcpy(&S.TimerInfo[nTimerIndex].pName, pName, nLen);
S.TimerInfo[nTimerIndex].pName[nLen] = '\0';
S.TimerInfo[nTimerIndex].nNameLen = nLen;
S.TimerInfo[nTimerIndex].nColor = nColor&0xffffff;
S.TimerInfo[nTimerIndex].nGroupIndex = nGroupIndex;
S.TimerInfo[nTimerIndex].nTimerIndex = nTimerIndex;
S.TimerToGroup[nTimerIndex] = nGroupIndex;
return nToken;
}
MicroProfileToken MicroProfileGetMetaToken(const char* pName)
{
MicroProfileInit();
MicroProfileScopeLock L(MicroProfileMutex());
for(uint32_t i = 0; i < MICROPROFILE_META_MAX; ++i)
{
if(!S.MetaCounters[i].pName)
{
S.MetaCounters[i].pName = pName;
return i;
}
else if(!MP_STRCASECMP(pName, S.MetaCounters[i].pName))
{
return i;
}
}
MP_ASSERT(0);//out of slots, increase MICROPROFILE_META_MAX
return (MicroProfileToken)-1;
}
inline void MicroProfileLogPut(MicroProfileToken nToken_, uint64_t nTick, uint64_t nBegin, MicroProfileThreadLog* pLog)
{
MP_ASSERT(pLog != 0); //this assert is hit if MicroProfileOnCreateThread is not called
MP_ASSERT(pLog->nActive);
uint32_t nPos = pLog->nPut.load(std::memory_order_relaxed);
uint32_t nNextPos = (nPos+1) % MICROPROFILE_BUFFER_SIZE;
if(nNextPos == pLog->nGet.load(std::memory_order_relaxed))
{
S.nOverflow = 100;
}
else
{
pLog->Log[nPos] = MicroProfileMakeLogIndex(nBegin, nToken_, nTick);
pLog->nPut.store(nNextPos, std::memory_order_release);
}
}
uint64_t MicroProfileEnter(MicroProfileToken nToken_)
{
if(MicroProfileGetGroupMask(nToken_) & S.nActiveGroup)
{
if(!MicroProfileGetThreadLog())
{
MicroProfileInitThreadLog();
}
uint64_t nTick = MP_TICK();
MicroProfileLogPut(nToken_, nTick, MP_LOG_ENTER, MicroProfileGetThreadLog());
return nTick;
}
return MICROPROFILE_INVALID_TICK;
}
void MicroProfileMetaUpdate(MicroProfileToken nToken, int nCount, MicroProfileTokenType eTokenType)
{
if((MP_DRAW_META_FIRST<<nToken) & S.nActiveBars)
{
MicroProfileThreadLog* pLog = MicroProfileTokenTypeCpu == eTokenType ? MicroProfileGetThreadLog() : g_MicroProfileGpuLog;
if(pLog)
{
MP_ASSERT(nToken < MICROPROFILE_META_MAX);
MicroProfileLogPut(nToken, nCount, MP_LOG_META, pLog);
}
}
}
void MicroProfileLeave(MicroProfileToken nToken_, uint64_t nTickStart)
{
if(MICROPROFILE_INVALID_TICK != nTickStart)
{
if(!MicroProfileGetThreadLog())
{
MicroProfileInitThreadLog();
}
uint64_t nTick = MP_TICK();
MicroProfileThreadLog* pLog = MicroProfileGetThreadLog();
MicroProfileLogPut(nToken_, nTick, MP_LOG_LEAVE, pLog);
}
}
uint64_t MicroProfileGpuEnter(MicroProfileToken nToken_)
{
if(MicroProfileGetGroupMask(nToken_) & S.nActiveGroup)
{
uint64_t nTimer = MicroProfileGpuInsertTimeStamp();
MicroProfileLogPut(nToken_, nTimer, MP_LOG_ENTER, g_MicroProfileGpuLog);
MicroProfileLogPut(nToken_, MP_TICK(), MP_LOG_GPU_EXTRA, g_MicroProfileGpuLog);
return 1;
}
return 0;
}
void MicroProfileGpuLeave(MicroProfileToken nToken_, uint64_t nTickStart)
{
if(nTickStart)
{
uint64_t nTimer = MicroProfileGpuInsertTimeStamp();
MicroProfileLogPut(nToken_, nTimer, MP_LOG_LEAVE, g_MicroProfileGpuLog);
MicroProfileLogPut(nToken_, MP_TICK(), MP_LOG_GPU_EXTRA, g_MicroProfileGpuLog);
}
}
inline void MicroProfileContextSwitchPut(MicroProfileContextSwitch* pContextSwitch)
{
if(S.nRunning || pContextSwitch->nTicks <= S.nPauseTicks)
{
uint32_t nPut = S.nContextSwitchPut;
S.ContextSwitch[nPut] = *pContextSwitch;
S.nContextSwitchPut = (S.nContextSwitchPut+1) % MICROPROFILE_CONTEXT_SWITCH_BUFFER_SIZE;
}
}
void MicroProfileGetRange(uint32_t nPut, uint32_t nGet, uint32_t nRange[2][2])
{
if(nPut > nGet)
{
nRange[0][0] = nGet;
nRange[0][1] = nPut;
nRange[1][0] = nRange[1][1] = 0;
}
else if(nPut != nGet)
{
MP_ASSERT(nGet != MICROPROFILE_BUFFER_SIZE);
uint32_t nCountEnd = MICROPROFILE_BUFFER_SIZE - nGet;
nRange[0][0] = nGet;
nRange[0][1] = nGet + nCountEnd;
nRange[1][0] = 0;
nRange[1][1] = nPut;
}
}
void MicroProfileFlip()
{
#if 0
//verify LogEntry wraps correctly
MicroProfileLogEntry c = MP_LOG_TICK_MASK-5000;
for(int i = 0; i < 10000; ++i, c += 1)
{
MicroProfileLogEntry l2 = (c+2500) & MP_LOG_TICK_MASK;
MP_ASSERT(2500 == MicroProfileLogTickDifference(c, l2));
}
#endif
MICROPROFILE_SCOPE(g_MicroProfileFlip);
std::lock_guard<std::recursive_mutex> Lock(MicroProfileMutex());
MicroProfileGpuFlip();
if(S.nToggleRunning)
{
S.nRunning = !S.nRunning;
if(!S.nRunning)
S.nPauseTicks = MP_TICK();
S.nToggleRunning = 0;
for(uint32_t i = 0; i < MICROPROFILE_MAX_THREADS; ++i)
{
MicroProfileThreadLog* pLog = S.Pool[i];
if(pLog)
{
pLog->nStackPos = 0;
}
}
}
uint32_t nAggregateClear = S.nAggregateClear || S.nAutoClearFrames, nAggregateFlip = 0;
if(S.nDumpFileNextFrame)
{
MicroProfileDumpToFile();
S.nDumpFileNextFrame = 0;
S.nAutoClearFrames = MICROPROFILE_GPU_FRAME_DELAY + 3; //hide spike from dumping webpage
}
if(S.nWebServerDataSent == (uint64_t)-1)
{
MicroProfileWebServerStart();
S.nWebServerDataSent = 0;
}
if(MicroProfileWebServerUpdate())
{
S.nAutoClearFrames = MICROPROFILE_GPU_FRAME_DELAY + 3; //hide spike from dumping webpage
}
if(S.nAutoClearFrames)
{
nAggregateClear = 1;
nAggregateFlip = 1;
S.nAutoClearFrames -= 1;
}
if(S.nRunning || S.nForceEnable)
{
S.nFramePutIndex++;
S.nFramePut = (S.nFramePut+1) % MICROPROFILE_MAX_FRAME_HISTORY;
MP_ASSERT((S.nFramePutIndex % MICROPROFILE_MAX_FRAME_HISTORY) == S.nFramePut);
S.nFrameCurrent = (S.nFramePut + MICROPROFILE_MAX_FRAME_HISTORY - MICROPROFILE_GPU_FRAME_DELAY - 1) % MICROPROFILE_MAX_FRAME_HISTORY;
S.nFrameCurrentIndex++;
uint32_t nFrameNext = (S.nFrameCurrent+1) % MICROPROFILE_MAX_FRAME_HISTORY;
uint32_t nContextSwitchPut = S.nContextSwitchPut;
if(S.nContextSwitchLastPut < nContextSwitchPut)
{
S.nContextSwitchUsage = (nContextSwitchPut - S.nContextSwitchLastPut);
}
else
{
S.nContextSwitchUsage = MICROPROFILE_CONTEXT_SWITCH_BUFFER_SIZE - S.nContextSwitchLastPut + nContextSwitchPut;
}
S.nContextSwitchLastPut = nContextSwitchPut;
MicroProfileFrameState* pFramePut = &S.Frames[S.nFramePut];
MicroProfileFrameState* pFrameCurrent = &S.Frames[S.nFrameCurrent];
MicroProfileFrameState* pFrameNext = &S.Frames[nFrameNext];
pFramePut->nFrameStartCpu = MP_TICK();
pFramePut->nFrameStartGpu = (uint32_t)MicroProfileGpuInsertTimeStamp();
if(pFrameNext->nFrameStartGpu != -1)
pFrameNext->nFrameStartGpu = MicroProfileGpuGetTimeStamp((uint32_t)pFrameNext->nFrameStartGpu);
if(pFrameCurrent->nFrameStartGpu == -1)
pFrameCurrent->nFrameStartGpu = pFrameNext->nFrameStartGpu + 1;
uint64_t nFrameStartCpu = pFrameCurrent->nFrameStartCpu;
uint64_t nFrameEndCpu = pFrameNext->nFrameStartCpu;
{
uint64_t nTick = nFrameEndCpu - nFrameStartCpu;
S.nFlipTicks = nTick;
S.nFlipAggregate += nTick;
S.nFlipMax = MicroProfileMax(S.nFlipMax, nTick);
}
uint8_t* pTimerToGroup = &S.TimerToGroup[0];
for(uint32_t i = 0; i < MICROPROFILE_MAX_THREADS; ++i)
{
MicroProfileThreadLog* pLog = S.Pool[i];
if(!pLog)
{
pFramePut->nLogStart[i] = 0;
}
else
{
uint32_t nPut = pLog->nPut.load(std::memory_order_acquire);
pFramePut->nLogStart[i] = nPut;
MP_ASSERT(nPut< MICROPROFILE_BUFFER_SIZE);
//need to keep last frame around to close timers. timers more than 1 frame old is ditched.
pLog->nGet.store(nPut, std::memory_order_relaxed);
}
}
if(S.nRunning)
{
uint64_t* pFrameGroup = &S.FrameGroup[0];
{
MICROPROFILE_SCOPE(g_MicroProfileClear);
for(uint32_t i = 0; i < S.nTotalTimers; ++i)
{
S.Frame[i].nTicks = 0;
S.Frame[i].nCount = 0;
S.FrameExclusive[i] = 0;
}
for(uint32_t i = 0; i < MICROPROFILE_MAX_GROUPS; ++i)
{
pFrameGroup[i] = 0;
}
for(uint32_t j = 0; j < MICROPROFILE_META_MAX; ++j)
{
if(S.MetaCounters[j].pName && 0 != (S.nActiveBars & (MP_DRAW_META_FIRST<<j)))
{
auto& Meta = S.MetaCounters[j];
for(uint32_t i = 0; i < S.nTotalTimers; ++i)
{
Meta.nCounters[i] = 0;
}
}
}
}
{
MICROPROFILE_SCOPE(g_MicroProfileThreadLoop);
for(uint32_t i = 0; i < MICROPROFILE_MAX_THREADS; ++i)
{
MicroProfileThreadLog* pLog = S.Pool[i];
if(!pLog)
continue;
uint8_t* pGroupStackPos = &pLog->nGroupStackPos[0];
int64_t nGroupTicks[MICROPROFILE_MAX_GROUPS] = {0};
uint32_t nPut = pFrameNext->nLogStart[i];
uint32_t nGet = pFrameCurrent->nLogStart[i];
uint32_t nRange[2][2] = { {0, 0}, {0, 0}, };
MicroProfileGetRange(nPut, nGet, nRange);
//fetch gpu results.
if(pLog->nGpu)
{
for(uint32_t j = 0; j < 2; ++j)
{
uint32_t nStart = nRange[j][0];
uint32_t nEnd = nRange[j][1];
for(uint32_t k = nStart; k < nEnd; ++k)
{
MicroProfileLogEntry L = pLog->Log[k];
if(MicroProfileLogType(L) < MP_LOG_META)
{
pLog->Log[k] = MicroProfileLogSetTick(L, MicroProfileGpuGetTimeStamp((uint32_t)MicroProfileLogGetTick(L)));
}
}
}
}
uint32_t* pStack = &pLog->nStack[0];
int64_t* pChildTickStack = &pLog->nChildTickStack[0];
uint32_t nStackPos = pLog->nStackPos;
for(uint32_t j = 0; j < 2; ++j)
{
uint32_t nStart = nRange[j][0];
uint32_t nEnd = nRange[j][1];
for(uint32_t k = nStart; k < nEnd; ++k)
{
MicroProfileLogEntry LE = pLog->Log[k];
int nType = MicroProfileLogType(LE);
if(MP_LOG_ENTER == nType)
{
int nTimer = MicroProfileLogTimerIndex(LE);
uint8_t nGroup = pTimerToGroup[nTimer];
// To avoid crashing due to OOB memory accesses/asserts
// simply skip this iteration
// MP_ASSERT(nStackPos < MICROPROFILE_STACK_MAX);
if (nStackPos >= MICROPROFILE_STACK_MAX) {
break;
}
MP_ASSERT(nGroup < MICROPROFILE_MAX_GROUPS);
pGroupStackPos[nGroup]++;
pStack[nStackPos++] = k;
pChildTickStack[nStackPos] = 0;
}
else if(MP_LOG_META == nType)
{
if(nStackPos)
{
int64_t nMetaIndex = MicroProfileLogTimerIndex(LE);
int64_t nMetaCount = MicroProfileLogGetTick(LE);
MP_ASSERT(nMetaIndex < MICROPROFILE_META_MAX);
int64_t nCounter = MicroProfileLogTimerIndex(pLog->Log[pStack[nStackPos-1]]);
S.MetaCounters[nMetaIndex].nCounters[nCounter] += nMetaCount;
}
}
else if(MP_LOG_LEAVE == nType)
{
int nTimer = MicroProfileLogTimerIndex(LE);
uint8_t nGroup = pTimerToGroup[nTimer];
MP_ASSERT(nGroup < MICROPROFILE_MAX_GROUPS);
if(nStackPos)
{
int64_t nTickStart = pLog->Log[pStack[nStackPos-1]];
int64_t nTicks = MicroProfileLogTickDifference(nTickStart, LE);
int64_t nChildTicks = pChildTickStack[nStackPos];
nStackPos--;
pChildTickStack[nStackPos] += nTicks;
uint32_t nTimerIndex = MicroProfileLogTimerIndex(LE);
S.Frame[nTimerIndex].nTicks += nTicks;
S.FrameExclusive[nTimerIndex] += (nTicks-nChildTicks);
S.Frame[nTimerIndex].nCount += 1;
MP_ASSERT(nGroup < MICROPROFILE_MAX_GROUPS);
uint8_t nGroupStackPos = pGroupStackPos[nGroup];
if(nGroupStackPos)
{
nGroupStackPos--;
if(0 == nGroupStackPos)
{
nGroupTicks[nGroup] += nTicks;
}
pGroupStackPos[nGroup] = nGroupStackPos;
}
}
}
}
}
for(uint32_t j = 0; j < MICROPROFILE_MAX_GROUPS; ++j)
{
pLog->nGroupTicks[j] += nGroupTicks[j];
pFrameGroup[j] += nGroupTicks[j];
}
pLog->nStackPos = nStackPos;
}
}
{
MICROPROFILE_SCOPE(g_MicroProfileAccumulate);
for(uint32_t i = 0; i < S.nTotalTimers; ++i)
{
S.AccumTimers[i].nTicks += S.Frame[i].nTicks;
S.AccumTimers[i].nCount += S.Frame[i].nCount;
S.AccumMaxTimers[i] = MicroProfileMax(S.AccumMaxTimers[i], S.Frame[i].nTicks);
S.AccumTimersExclusive[i] += S.FrameExclusive[i];
S.AccumMaxTimersExclusive[i] = MicroProfileMax(S.AccumMaxTimersExclusive[i], S.FrameExclusive[i]);
}
for(uint32_t i = 0; i < MICROPROFILE_MAX_GROUPS; ++i)
{
S.AccumGroup[i] += pFrameGroup[i];
S.AccumGroupMax[i] = MicroProfileMax(S.AccumGroupMax[i], pFrameGroup[i]);
}
for(uint32_t j = 0; j < MICROPROFILE_META_MAX; ++j)
{
if(S.MetaCounters[j].pName && 0 != (S.nActiveBars & (MP_DRAW_META_FIRST<<j)))
{
auto& Meta = S.MetaCounters[j];
uint64_t nSum = 0;;
for(uint32_t i = 0; i < S.nTotalTimers; ++i)
{
uint64_t nCounter = Meta.nCounters[i];
Meta.nAccumMax[i] = MicroProfileMax(Meta.nAccumMax[i], nCounter);
Meta.nAccum[i] += nCounter;
nSum += nCounter;
}
Meta.nSumAccum += nSum;
Meta.nSumAccumMax = MicroProfileMax(Meta.nSumAccumMax, nSum);
}
}
}
for(uint32_t i = 0; i < MICROPROFILE_MAX_GRAPHS; ++i)
{
if(S.Graph[i].nToken != MICROPROFILE_INVALID_TOKEN)
{
MicroProfileToken nToken = S.Graph[i].nToken;
S.Graph[i].nHistory[S.nGraphPut] = S.Frame[MicroProfileGetTimerIndex(nToken)].nTicks;
}
}
S.nGraphPut = (S.nGraphPut+1) % MICROPROFILE_GRAPH_HISTORY;
}
if(S.nRunning && S.nAggregateFlip <= ++S.nAggregateFlipCount)
{
nAggregateFlip = 1;
if(S.nAggregateFlip) // if 0 accumulate indefinitely
{
nAggregateClear = 1;
}
}
}
if(nAggregateFlip)
{
memcpy(&S.Aggregate[0], &S.AccumTimers[0], sizeof(S.Aggregate[0]) * S.nTotalTimers);
memcpy(&S.AggregateMax[0], &S.AccumMaxTimers[0], sizeof(S.AggregateMax[0]) * S.nTotalTimers);
memcpy(&S.AggregateExclusive[0], &S.AccumTimersExclusive[0], sizeof(S.AggregateExclusive[0]) * S.nTotalTimers);
memcpy(&S.AggregateMaxExclusive[0], &S.AccumMaxTimersExclusive[0], sizeof(S.AggregateMaxExclusive[0]) * S.nTotalTimers);
memcpy(&S.AggregateGroup[0], &S.AccumGroup[0], sizeof(S.AggregateGroup));
memcpy(&S.AggregateGroupMax[0], &S.AccumGroupMax[0], sizeof(S.AggregateGroup));
for(uint32_t i = 0; i < MICROPROFILE_MAX_THREADS; ++i)
{
MicroProfileThreadLog* pLog = S.Pool[i];
if(!pLog)
continue;
memcpy(&pLog->nAggregateGroupTicks[0], &pLog->nGroupTicks[0], sizeof(pLog->nAggregateGroupTicks));
if(nAggregateClear)
{
memset(&pLog->nGroupTicks[0], 0, sizeof(pLog->nGroupTicks));
}
}
for(uint32_t j = 0; j < MICROPROFILE_META_MAX; ++j)
{
if(S.MetaCounters[j].pName && 0 != (S.nActiveBars & (MP_DRAW_META_FIRST<<j)))
{
auto& Meta = S.MetaCounters[j];
memcpy(&Meta.nAggregateMax[0], &Meta.nAccumMax[0], sizeof(Meta.nAggregateMax[0]) * S.nTotalTimers);
memcpy(&Meta.nAggregate[0], &Meta.nAccum[0], sizeof(Meta.nAggregate[0]) * S.nTotalTimers);
Meta.nSumAggregate = Meta.nSumAccum;
Meta.nSumAggregateMax = Meta.nSumAccumMax;
if(nAggregateClear)
{
memset(&Meta.nAccumMax[0], 0, sizeof(Meta.nAccumMax[0]) * S.nTotalTimers);
memset(&Meta.nAccum[0], 0, sizeof(Meta.nAccum[0]) * S.nTotalTimers);
Meta.nSumAccum = 0;
Meta.nSumAccumMax = 0;
}
}
}
S.nAggregateFrames = S.nAggregateFlipCount;
S.nFlipAggregateDisplay = S.nFlipAggregate;
S.nFlipMaxDisplay = S.nFlipMax;
if(nAggregateClear)
{
memset(&S.AccumTimers[0], 0, sizeof(S.Aggregate[0]) * S.nTotalTimers);
memset(&S.AccumMaxTimers[0], 0, sizeof(S.AccumMaxTimers[0]) * S.nTotalTimers);
memset(&S.AccumTimersExclusive[0], 0, sizeof(S.AggregateExclusive[0]) * S.nTotalTimers);
memset(&S.AccumMaxTimersExclusive[0], 0, sizeof(S.AccumMaxTimersExclusive[0]) * S.nTotalTimers);
memset(&S.AccumGroup[0], 0, sizeof(S.AggregateGroup));
memset(&S.AccumGroupMax[0], 0, sizeof(S.AggregateGroup));
S.nAggregateFlipCount = 0;
S.nFlipAggregate = 0;
S.nFlipMax = 0;
S.nAggregateFlipTick = MP_TICK();
}
}
S.nAggregateClear = 0;
uint64_t nNewActiveGroup = 0;
if(S.nForceEnable || (S.nDisplay && S.nRunning))
nNewActiveGroup = S.nAllGroupsWanted ? S.nGroupMask : S.nActiveGroupWanted;
nNewActiveGroup |= S.nForceGroup;
nNewActiveGroup |= S.nForceGroupUI;
if(S.nActiveGroup != nNewActiveGroup)
S.nActiveGroup = nNewActiveGroup;
uint32_t nNewActiveBars = 0;
if(S.nDisplay && S.nRunning)
nNewActiveBars = S.nBars;
if(S.nForceMetaCounters)
{
for(int i = 0; i < MICROPROFILE_META_MAX; ++i)
{
if(S.MetaCounters[i].pName)
{
nNewActiveBars |= (MP_DRAW_META_FIRST<<i);
}
}
}
if(nNewActiveBars != S.nActiveBars)
S.nActiveBars = nNewActiveBars;
}
void MicroProfileSetForceEnable(bool bEnable)
{
S.nForceEnable = bEnable ? 1 : 0;
}
bool MicroProfileGetForceEnable()
{
return S.nForceEnable != 0;
}
void MicroProfileSetEnableAllGroups(bool bEnableAllGroups)
{
S.nAllGroupsWanted = bEnableAllGroups ? 1 : 0;
}
inline void MicroProfileEnableCategory(const char* pCategory, bool bEnabled)
{
int nCategoryIndex = -1;
for(uint32_t i = 0; i < S.nCategoryCount; ++i)
{
if(!MP_STRCASECMP(pCategory, S.CategoryInfo[i].pName))
{
nCategoryIndex = (int)i;
break;
}
}
if(nCategoryIndex >= 0)
{
if(bEnabled)
{
S.nActiveGroupWanted |= S.CategoryInfo[nCategoryIndex].nGroupMask;
}
else
{
S.nActiveGroupWanted &= ~S.CategoryInfo[nCategoryIndex].nGroupMask;
}
}
}
void MicroProfileEnableCategory(const char* pCategory)
{
MicroProfileEnableCategory(pCategory, true);
}
void MicroProfileDisableCategory(const char* pCategory)
{
MicroProfileEnableCategory(pCategory, false);
}
bool MicroProfileGetEnableAllGroups()
{
return 0 != S.nAllGroupsWanted;
}
void MicroProfileSetForceMetaCounters(bool bForce)
{
S.nForceMetaCounters = bForce ? 1 : 0;
}
bool MicroProfileGetForceMetaCounters()
{
return 0 != S.nForceMetaCounters;
}
void MicroProfileEnableMetaCounter(const char* pMeta)
{
for(uint32_t i = 0; i < MICROPROFILE_META_MAX; ++i)
{
if(S.MetaCounters[i].pName && 0 == MP_STRCASECMP(S.MetaCounters[i].pName, pMeta))
{
S.nBars |= (MP_DRAW_META_FIRST<<i);
return;
}
}
}
void MicroProfileDisableMetaCounter(const char* pMeta)
{
for(uint32_t i = 0; i < MICROPROFILE_META_MAX; ++i)
{
if(S.MetaCounters[i].pName && 0 == MP_STRCASECMP(S.MetaCounters[i].pName, pMeta))
{
S.nBars &= ~(MP_DRAW_META_FIRST<<i);
return;
}
}
}
void MicroProfileSetAggregateFrames(int nFrames)
{
S.nAggregateFlip = (uint32_t)nFrames;
if(0 == nFrames)
{
S.nAggregateClear = 1;
}
}
int MicroProfileGetAggregateFrames()
{
return S.nAggregateFlip;
}
int MicroProfileGetCurrentAggregateFrames()
{
return int(S.nAggregateFlip ? S.nAggregateFlip : S.nAggregateFlipCount);
}
void MicroProfileForceEnableGroup(const char* pGroup, MicroProfileTokenType Type)
{
MicroProfileInit();
std::lock_guard<std::recursive_mutex> Lock(MicroProfileMutex());
uint16_t nGroup = MicroProfileGetGroup(pGroup, Type);
S.nForceGroup |= (1ll << nGroup);
}
void MicroProfileForceDisableGroup(const char* pGroup, MicroProfileTokenType Type)
{
MicroProfileInit();
std::lock_guard<std::recursive_mutex> Lock(MicroProfileMutex());
uint16_t nGroup = MicroProfileGetGroup(pGroup, Type);
S.nForceGroup &= ~(1ll << nGroup);
}
inline void MicroProfileCalcAllTimers(float* pTimers, float* pAverage, float* pMax, float* pCallAverage, float* pExclusive, float* pAverageExclusive, float* pMaxExclusive, float* pTotal, uint32_t nSize)
{
for(uint32_t i = 0; i < S.nTotalTimers && i < nSize; ++i)
{
const uint32_t nGroupId = S.TimerInfo[i].nGroupIndex;
const float fToMs = MicroProfileTickToMsMultiplier(S.GroupInfo[nGroupId].Type == MicroProfileTokenTypeGpu ? MicroProfileTicksPerSecondGpu() : MicroProfileTicksPerSecondCpu());
uint32_t nTimer = i;
uint32_t nIdx = i * 2;
uint32_t nAggregateFrames = S.nAggregateFrames ? S.nAggregateFrames : 1;
uint32_t nAggregateCount = S.Aggregate[nTimer].nCount ? S.Aggregate[nTimer].nCount : 1;
float fToPrc = S.fRcpReferenceTime;
float fMs = fToMs * (S.Frame[nTimer].nTicks);
float fPrc = MicroProfileMin(fMs * fToPrc, 1.f);
float fAverageMs = fToMs * (S.Aggregate[nTimer].nTicks / nAggregateFrames);
float fAveragePrc = MicroProfileMin(fAverageMs * fToPrc, 1.f);
float fMaxMs = fToMs * (S.AggregateMax[nTimer]);
float fMaxPrc = MicroProfileMin(fMaxMs * fToPrc, 1.f);
float fCallAverageMs = fToMs * (S.Aggregate[nTimer].nTicks / nAggregateCount);
float fCallAveragePrc = MicroProfileMin(fCallAverageMs * fToPrc, 1.f);
float fMsExclusive = fToMs * (S.FrameExclusive[nTimer]);
float fPrcExclusive = MicroProfileMin(fMsExclusive * fToPrc, 1.f);
float fAverageMsExclusive = fToMs * (S.AggregateExclusive[nTimer] / nAggregateFrames);
float fAveragePrcExclusive = MicroProfileMin(fAverageMsExclusive * fToPrc, 1.f);
float fMaxMsExclusive = fToMs * (S.AggregateMaxExclusive[nTimer]);
float fMaxPrcExclusive = MicroProfileMin(fMaxMsExclusive * fToPrc, 1.f);
float fTotalMs = fToMs * S.Aggregate[nTimer].nTicks;
pTimers[nIdx] = fMs;
pTimers[nIdx+1] = fPrc;
pAverage[nIdx] = fAverageMs;
pAverage[nIdx+1] = fAveragePrc;
pMax[nIdx] = fMaxMs;
pMax[nIdx+1] = fMaxPrc;
pCallAverage[nIdx] = fCallAverageMs;
pCallAverage[nIdx+1] = fCallAveragePrc;
pExclusive[nIdx] = fMsExclusive;
pExclusive[nIdx+1] = fPrcExclusive;
pAverageExclusive[nIdx] = fAverageMsExclusive;
pAverageExclusive[nIdx+1] = fAveragePrcExclusive;
pMaxExclusive[nIdx] = fMaxMsExclusive;
pMaxExclusive[nIdx+1] = fMaxPrcExclusive;
pTotal[nIdx] = fTotalMs;
pTotal[nIdx+1] = 0.f;
}
}
void MicroProfileTogglePause()
{
S.nToggleRunning = 1;
}
float MicroProfileGetTime(const char* pGroup, const char* pName)
{
MicroProfileToken nToken = MicroProfileFindToken(pGroup, pName);
if(nToken == MICROPROFILE_INVALID_TOKEN)
{
return 0.f;
}
uint32_t nTimerIndex = MicroProfileGetTimerIndex(nToken);
uint32_t nGroupIndex = MicroProfileGetGroupIndex(nToken);
float fToMs = MicroProfileTickToMsMultiplier(S.GroupInfo[nGroupIndex].Type == MicroProfileTokenTypeGpu ? MicroProfileTicksPerSecondGpu() : MicroProfileTicksPerSecondCpu());
return S.Frame[nTimerIndex].nTicks * fToMs;
}
void MicroProfileContextSwitchSearch(uint32_t* pContextSwitchStart, uint32_t* pContextSwitchEnd, uint64_t nBaseTicksCpu, uint64_t nBaseTicksEndCpu)
{
MICROPROFILE_SCOPE(g_MicroProfileContextSwitchSearch);
uint32_t nContextSwitchPut = S.nContextSwitchPut;
uint64_t nContextSwitchStart, nContextSwitchEnd;
nContextSwitchStart = nContextSwitchEnd = (nContextSwitchPut + MICROPROFILE_CONTEXT_SWITCH_BUFFER_SIZE - 1) % MICROPROFILE_CONTEXT_SWITCH_BUFFER_SIZE;
int64_t nSearchEnd = nBaseTicksEndCpu + MicroProfileMsToTick(30.f, MicroProfileTicksPerSecondCpu());
int64_t nSearchBegin = nBaseTicksCpu - MicroProfileMsToTick(30.f, MicroProfileTicksPerSecondCpu());
for(uint32_t i = 0; i < MICROPROFILE_CONTEXT_SWITCH_BUFFER_SIZE; ++i)
{
uint32_t nIndex = (nContextSwitchPut + MICROPROFILE_CONTEXT_SWITCH_BUFFER_SIZE - (i+1)) % MICROPROFILE_CONTEXT_SWITCH_BUFFER_SIZE;
MicroProfileContextSwitch& CS = S.ContextSwitch[nIndex];
if(CS.nTicks > nSearchEnd)
{
nContextSwitchEnd = nIndex;
}
if(CS.nTicks > nSearchBegin)
{
nContextSwitchStart = nIndex;
}
}
*pContextSwitchStart = nContextSwitchStart;
*pContextSwitchEnd = nContextSwitchEnd;
}
#if MICROPROFILE_WEBSERVER
#define MICROPROFILE_EMBED_HTML
extern const char* g_MicroProfileHtml_begin[];
extern size_t g_MicroProfileHtml_begin_sizes[];
extern size_t g_MicroProfileHtml_begin_count;
extern const char* g_MicroProfileHtml_end[];
extern size_t g_MicroProfileHtml_end_sizes[];
extern size_t g_MicroProfileHtml_end_count;
typedef void MicroProfileWriteCallback(void* Handle, size_t size, const char* pData);
uint32_t MicroProfileWebServerPort()
{
return S.nWebServerPort;
}
void MicroProfileDumpFile(const char* pHtml, const char* pCsv)
{
S.nDumpFileNextFrame = 0;
if(pHtml)
{
uint32_t nLen = strlen(pHtml);
if(nLen > sizeof(S.HtmlDumpPath)-1)
{
return;
}
memcpy(S.HtmlDumpPath, pHtml, nLen+1);
S.nDumpFileNextFrame |= 1;
}
if(pCsv)
{
uint32_t nLen = strlen(pCsv);
if(nLen > sizeof(S.CsvDumpPath)-1)
{
return;
}
memcpy(S.CsvDumpPath, pCsv, nLen+1);
S.nDumpFileNextFrame |= 2;
}
}
void MicroProfilePrintf(MicroProfileWriteCallback CB, void* Handle, const char* pFmt, ...)
{
char buffer[32*1024];
va_list args;
va_start (args, pFmt);
#ifdef _WIN32
size_t size = vsprintf_s(buffer, pFmt, args);
#else
size_t size = vsnprintf(buffer, sizeof(buffer)-1, pFmt, args);
#endif
CB(Handle, size, &buffer[0]);
va_end (args);
}
#define printf(...) MicroProfilePrintf(CB, Handle, __VA_ARGS__)
void MicroProfileDumpCsv(MicroProfileWriteCallback CB, void* Handle, int nMaxFrames)
{
uint32_t nAggregateFrames = S.nAggregateFrames ? S.nAggregateFrames : 1;
float fToMsCPU = MicroProfileTickToMsMultiplier(MicroProfileTicksPerSecondCpu());
float fToMsGPU = MicroProfileTickToMsMultiplier(MicroProfileTicksPerSecondGpu());
printf("frames,%d\n", nAggregateFrames);
printf("group,name,average,max,callaverage\n");
uint32_t nNumTimers = S.nTotalTimers;
uint32_t nBlockSize = 2 * nNumTimers;
float* pTimers = (float*)alloca(nBlockSize * 8 * sizeof(float));
float* pAverage = pTimers + nBlockSize;
float* pMax = pTimers + 2 * nBlockSize;
float* pCallAverage = pTimers + 3 * nBlockSize;
float* pTimersExclusive = pTimers + 4 * nBlockSize;
float* pAverageExclusive = pTimers + 5 * nBlockSize;
float* pMaxExclusive = pTimers + 6 * nBlockSize;
float* pTotal = pTimers + 7 * nBlockSize;
MicroProfileCalcAllTimers(pTimers, pAverage, pMax, pCallAverage, pTimersExclusive, pAverageExclusive, pMaxExclusive, pTotal, nNumTimers);
for(uint32_t i = 0; i < S.nTotalTimers; ++i)
{
uint32_t nIdx = i * 2;
printf("\"%s\",\"%s\",%f,%f,%f\n", S.TimerInfo[i].pName, S.GroupInfo[S.TimerInfo[i].nGroupIndex].pName, pAverage[nIdx], pMax[nIdx], pCallAverage[nIdx]);
}
printf("\n\n");
printf("group,average,max,total\n");
for(uint32_t j = 0; j < MICROPROFILE_MAX_GROUPS; ++j)
{
const char* pGroupName = S.GroupInfo[j].pName;
float fToMs = S.GroupInfo[j].Type == MicroProfileTokenTypeGpu ? fToMsGPU : fToMsCPU;
if(pGroupName[0] != '\0')
{
printf("\"%s\",%.3f,%.3f,%.3f\n", pGroupName, fToMs * S.AggregateGroup[j] / nAggregateFrames, fToMs * S.AggregateGroup[j] / nAggregateFrames, fToMs * S.AggregateGroup[j]);
}
}
printf("\n\n");
printf("group,thread,average,total\n");
for(uint32_t j = 0; j < MICROPROFILE_MAX_GROUPS; ++j)
{
for(uint32_t i = 0; i < S.nNumLogs; ++i)
{
if(S.Pool[i])
{
const char* pThreadName = &S.Pool[i]->ThreadName[0];
// MicroProfilePrintf(CB, Handle, "var ThreadGroupTime%d = [", i);
float fToMs = S.Pool[i]->nGpu ? fToMsGPU : fToMsCPU;
{
uint64_t nTicks = S.Pool[i]->nAggregateGroupTicks[j];
float fTime = nTicks / nAggregateFrames * fToMs;
float fTimeTotal = nTicks * fToMs;
if(fTimeTotal > 0.01f)
{
const char* pGroupName = S.GroupInfo[j].pName;
printf("\"%s\",\"%s\",%.3f,%.3f\n", pGroupName, pThreadName, fTime, fTimeTotal);
}
}
}
}
}
printf("\n\n");
printf("frametimecpu\n");
const uint32_t nCount = MICROPROFILE_MAX_FRAME_HISTORY - MICROPROFILE_GPU_FRAME_DELAY - 3;
const uint32_t nStart = S.nFrameCurrent;
for(uint32_t i = nCount; i > 0; i--)
{
uint32_t nFrame = (nStart + MICROPROFILE_MAX_FRAME_HISTORY - i) % MICROPROFILE_MAX_FRAME_HISTORY;
uint32_t nFrameNext = (nStart + MICROPROFILE_MAX_FRAME_HISTORY - i + 1) % MICROPROFILE_MAX_FRAME_HISTORY;
uint64_t nTicks = S.Frames[nFrameNext].nFrameStartCpu - S.Frames[nFrame].nFrameStartCpu;
printf("%f,", nTicks * fToMsCPU);
}
printf("\n");
printf("\n\n");
printf("frametimegpu\n");
for(uint32_t i = nCount; i > 0; i--)
{
uint32_t nFrame = (nStart + MICROPROFILE_MAX_FRAME_HISTORY - i) % MICROPROFILE_MAX_FRAME_HISTORY;
uint32_t nFrameNext = (nStart + MICROPROFILE_MAX_FRAME_HISTORY - i + 1) % MICROPROFILE_MAX_FRAME_HISTORY;
uint64_t nTicks = S.Frames[nFrameNext].nFrameStartGpu - S.Frames[nFrame].nFrameStartGpu;
printf("%f,", nTicks * fToMsGPU);
}
printf("\n\n");
printf("Meta\n");//only single frame snapshot
printf("name,average,max,total\n");
for(int j = 0; j < MICROPROFILE_META_MAX; ++j)
{
if(S.MetaCounters[j].pName)
{
printf("\"%s\",%f,%lld,%lld\n",S.MetaCounters[j].pName, S.MetaCounters[j].nSumAggregate / (float)nAggregateFrames, S.MetaCounters[j].nSumAggregateMax,S.MetaCounters[j].nSumAggregate);
}
}
}
#undef printf
void MicroProfileDumpHtml(MicroProfileWriteCallback CB, void* Handle, int nMaxFrames, const char* pHost)
{
uint32_t nRunning = S.nRunning;
S.nRunning = 0;
//stall pushing of timers
uint64_t nActiveGroup = S.nActiveGroup;
S.nActiveGroup = 0;
S.nPauseTicks = MP_TICK();
for(size_t i = 0; i < g_MicroProfileHtml_begin_count; ++i)
{
CB(Handle, g_MicroProfileHtml_begin_sizes[i]-1, g_MicroProfileHtml_begin[i]);
}
//dump info
uint64_t nTicks = MP_TICK();
float fToMsCPU = MicroProfileTickToMsMultiplier(MicroProfileTicksPerSecondCpu());
float fToMsGPU = MicroProfileTickToMsMultiplier(MicroProfileTicksPerSecondGpu());
float fAggregateMs = fToMsCPU * (nTicks - S.nAggregateFlipTick);
MicroProfilePrintf(CB, Handle, "var DumpHost = '%s';\n", pHost ? pHost : "");
time_t CaptureTime;
time(&CaptureTime);
MicroProfilePrintf(CB, Handle, "var DumpUtcCaptureTime = %ld;\n", CaptureTime);
MicroProfilePrintf(CB, Handle, "var AggregateInfo = {'Frames':%d, 'Time':%f};\n", S.nAggregateFrames, fAggregateMs);
//categories
MicroProfilePrintf(CB, Handle, "var CategoryInfo = Array(%d);\n",S.nCategoryCount);
for(uint32_t i = 0; i < S.nCategoryCount; ++i)
{
MicroProfilePrintf(CB, Handle, "CategoryInfo[%d] = \"%s\";\n", i, S.CategoryInfo[i].pName);
}
//groups
MicroProfilePrintf(CB, Handle, "var GroupInfo = Array(%d);\n\n",S.nGroupCount);
uint32_t nAggregateFrames = S.nAggregateFrames ? S.nAggregateFrames : 1;
float fRcpAggregateFrames = 1.f / nAggregateFrames;
for(uint32_t i = 0; i < S.nGroupCount; ++i)
{
MP_ASSERT(i == S.GroupInfo[i].nGroupIndex);
float fToMs = S.GroupInfo[i].Type == MicroProfileTokenTypeCpu ? fToMsCPU : fToMsGPU;
MicroProfilePrintf(CB, Handle, "GroupInfo[%d] = MakeGroup(%d, \"%s\", %d, %d, %d, %f, %f, %f, '#%02x%02x%02x');\n",
S.GroupInfo[i].nGroupIndex,
S.GroupInfo[i].nGroupIndex,
S.GroupInfo[i].pName,
S.GroupInfo[i].nCategory,
S.GroupInfo[i].nNumTimers,
S.GroupInfo[i].Type == MicroProfileTokenTypeGpu?1:0,
fToMs * S.AggregateGroup[i],
fToMs * S.AggregateGroup[i] / nAggregateFrames,
fToMs * S.AggregateGroupMax[i],
MICROPROFILE_UNPACK_RED(S.GroupInfo[i].nColor) & 0xff,
MICROPROFILE_UNPACK_GREEN(S.GroupInfo[i].nColor) & 0xff,
MICROPROFILE_UNPACK_BLUE(S.GroupInfo[i].nColor) & 0xff);
}
//timers
uint32_t nNumTimers = S.nTotalTimers;
uint32_t nBlockSize = 2 * nNumTimers;
float* pTimers = (float*)alloca(nBlockSize * 8 * sizeof(float));
float* pAverage = pTimers + nBlockSize;
float* pMax = pTimers + 2 * nBlockSize;
float* pCallAverage = pTimers + 3 * nBlockSize;
float* pTimersExclusive = pTimers + 4 * nBlockSize;
float* pAverageExclusive = pTimers + 5 * nBlockSize;
float* pMaxExclusive = pTimers + 6 * nBlockSize;
float* pTotal = pTimers + 7 * nBlockSize;
MicroProfileCalcAllTimers(pTimers, pAverage, pMax, pCallAverage, pTimersExclusive, pAverageExclusive, pMaxExclusive, pTotal, nNumTimers);
MicroProfilePrintf(CB, Handle, "\nvar TimerInfo = Array(%d);\n\n", S.nTotalTimers);
for(uint32_t i = 0; i < S.nTotalTimers; ++i)
{
uint32_t nIdx = i * 2;
MP_ASSERT(i == S.TimerInfo[i].nTimerIndex);
MicroProfilePrintf(CB, Handle, "var Meta%d = [", i);
bool bOnce = true;
for(int j = 0; j < MICROPROFILE_META_MAX; ++j)
{
if(S.MetaCounters[j].pName)
{
uint32_t lala = S.MetaCounters[j].nCounters[i];
MicroProfilePrintf(CB, Handle, bOnce ? "%d" : ",%d", lala);
bOnce = false;
}
}
MicroProfilePrintf(CB, Handle, "];\n");
MicroProfilePrintf(CB, Handle, "var MetaAvg%d = [", i);
bOnce = true;
for(int j = 0; j < MICROPROFILE_META_MAX; ++j)
{
if(S.MetaCounters[j].pName)
{
MicroProfilePrintf(CB, Handle, bOnce ? "%f" : ",%f", fRcpAggregateFrames * S.MetaCounters[j].nAggregate[i]);
bOnce = false;
}
}
MicroProfilePrintf(CB, Handle, "];\n");
MicroProfilePrintf(CB, Handle, "var MetaMax%d = [", i);
bOnce = true;
for(int j = 0; j < MICROPROFILE_META_MAX; ++j)
{
if(S.MetaCounters[j].pName)
{
MicroProfilePrintf(CB, Handle, bOnce ? "%d" : ",%d", S.MetaCounters[j].nAggregateMax[i]);
bOnce = false;
}
}
MicroProfilePrintf(CB, Handle, "];\n");
uint32_t nColor = S.TimerInfo[i].nColor;
uint32_t nColorDark = (nColor >> 1) & ~0x80808080;
MicroProfilePrintf(CB, Handle, "TimerInfo[%d] = MakeTimer(%d, \"%s\", %d, '#%02x%02x%02x','#%02x%02x%02x', %f, %f, %f, %f, %f, %d, %f, Meta%d, MetaAvg%d, MetaMax%d);\n", S.TimerInfo[i].nTimerIndex, S.TimerInfo[i].nTimerIndex, S.TimerInfo[i].pName, S.TimerInfo[i].nGroupIndex,
MICROPROFILE_UNPACK_RED(nColor) & 0xff,
MICROPROFILE_UNPACK_GREEN(nColor) & 0xff,
MICROPROFILE_UNPACK_BLUE(nColor) & 0xff,
MICROPROFILE_UNPACK_RED(nColorDark) & 0xff,
MICROPROFILE_UNPACK_GREEN(nColorDark) & 0xff,
MICROPROFILE_UNPACK_BLUE(nColorDark) & 0xff,
pAverage[nIdx],
pMax[nIdx],
pAverageExclusive[nIdx],
pMaxExclusive[nIdx],
pCallAverage[nIdx],
S.Aggregate[i].nCount,
pTotal[nIdx],
i,i,i);
}
MicroProfilePrintf(CB, Handle, "\nvar ThreadNames = [");
for(uint32_t i = 0; i < S.nNumLogs; ++i)
{
if(S.Pool[i])
{
MicroProfilePrintf(CB, Handle, "'%s',", S.Pool[i]->ThreadName);
}
else
{
MicroProfilePrintf(CB, Handle, "'Thread %d',", i);
}
}
MicroProfilePrintf(CB, Handle, "];\n\n");
for(uint32_t i = 0; i < S.nNumLogs; ++i)
{
if(S.Pool[i])
{
MicroProfilePrintf(CB, Handle, "var ThreadGroupTime%d = [", i);
float fToMs = S.Pool[i]->nGpu ? fToMsGPU : fToMsCPU;
for(uint32_t j = 0; j < MICROPROFILE_MAX_GROUPS; ++j)
{
MicroProfilePrintf(CB, Handle, "%f,", S.Pool[i]->nAggregateGroupTicks[j]/nAggregateFrames * fToMs);
}
MicroProfilePrintf(CB, Handle, "];\n");
}
}
MicroProfilePrintf(CB, Handle, "\nvar ThreadGroupTimeArray = [");
for(uint32_t i = 0; i < S.nNumLogs; ++i)
{
if(S.Pool[i])
{
MicroProfilePrintf(CB, Handle, "ThreadGroupTime%d,", i);
}
}
MicroProfilePrintf(CB, Handle, "];\n");
for(uint32_t i = 0; i < S.nNumLogs; ++i)
{
if(S.Pool[i])
{
MicroProfilePrintf(CB, Handle, "var ThreadGroupTimeTotal%d = [", i);
float fToMs = S.Pool[i]->nGpu ? fToMsGPU : fToMsCPU;
for(uint32_t j = 0; j < MICROPROFILE_MAX_GROUPS; ++j)
{
MicroProfilePrintf(CB, Handle, "%f,", S.Pool[i]->nAggregateGroupTicks[j] * fToMs);
}
MicroProfilePrintf(CB, Handle, "];\n");
}
}
MicroProfilePrintf(CB, Handle, "\nvar ThreadGroupTimeTotalArray = [");
for(uint32_t i = 0; i < S.nNumLogs; ++i)
{
if(S.Pool[i])
{
MicroProfilePrintf(CB, Handle, "ThreadGroupTimeTotal%d,", i);
}
}
MicroProfilePrintf(CB, Handle, "];");
MicroProfilePrintf(CB, Handle, "\nvar ThreadIds = [");
for(uint32_t i = 0; i < S.nNumLogs; ++i)
{
if(S.Pool[i])
{
ThreadIdType ThreadId = S.Pool[i]->nThreadId;
if(!ThreadId)
{
ThreadId = (ThreadIdType)-1;
}
MicroProfilePrintf(CB, Handle, "%d,", ThreadId);
}
else
{
MicroProfilePrintf(CB, Handle, "-1,", i);
}
}
MicroProfilePrintf(CB, Handle, "];\n\n");
MicroProfilePrintf(CB, Handle, "\nvar MetaNames = [");
for(int i = 0; i < MICROPROFILE_META_MAX; ++i)
{
if(S.MetaCounters[i].pName)
{
MicroProfilePrintf(CB, Handle, "'%s',", S.MetaCounters[i].pName);
}
}
MicroProfilePrintf(CB, Handle, "];\n\n");
uint32_t nNumFrames = (MICROPROFILE_MAX_FRAME_HISTORY - MICROPROFILE_GPU_FRAME_DELAY - 3); //leave a few to not overwrite
nNumFrames = MicroProfileMin(nNumFrames, (uint32_t)nMaxFrames);
uint32_t nFirstFrame = (S.nFrameCurrent + MICROPROFILE_MAX_FRAME_HISTORY - nNumFrames) % MICROPROFILE_MAX_FRAME_HISTORY;
uint32_t nLastFrame = (nFirstFrame + nNumFrames) % MICROPROFILE_MAX_FRAME_HISTORY;
MP_ASSERT(nLastFrame == (S.nFrameCurrent % MICROPROFILE_MAX_FRAME_HISTORY));
MP_ASSERT(nFirstFrame < MICROPROFILE_MAX_FRAME_HISTORY);
MP_ASSERT(nLastFrame < MICROPROFILE_MAX_FRAME_HISTORY);
const int64_t nTickStart = S.Frames[nFirstFrame].nFrameStartCpu;
const int64_t nTickEnd = S.Frames[nLastFrame].nFrameStartCpu;
int64_t nTickStartGpu = S.Frames[nFirstFrame].nFrameStartGpu;
int64_t nTickReferenceCpu, nTickReferenceGpu;
int64_t nTicksPerSecondCpu = MicroProfileTicksPerSecondCpu();
int64_t nTicksPerSecondGpu = MicroProfileTicksPerSecondGpu();
int nTickReference = 0;
if(MicroProfileGetGpuTickReference(&nTickReferenceCpu, &nTickReferenceGpu))
{
nTickStartGpu = (nTickStart - nTickReferenceCpu) * nTicksPerSecondGpu / nTicksPerSecondCpu + nTickReferenceGpu;
nTickReference = 1;
}
#if MICROPROFILE_DEBUG
printf("dumping %d frames\n", nNumFrames);
printf("dumping frame %d to %d\n", nFirstFrame, nLastFrame);
#endif
uint32_t* nTimerCounter = (uint32_t*)alloca(sizeof(uint32_t)* S.nTotalTimers);
memset(nTimerCounter, 0, sizeof(uint32_t) * S.nTotalTimers);
MicroProfilePrintf(CB, Handle, "var Frames = Array(%d);\n", nNumFrames);
for(uint32_t i = 0; i < nNumFrames; ++i)
{
uint32_t nFrameIndex = (nFirstFrame + i) % MICROPROFILE_MAX_FRAME_HISTORY;
uint32_t nFrameIndexNext = (nFrameIndex + 1) % MICROPROFILE_MAX_FRAME_HISTORY;
for(uint32_t j = 0; j < S.nNumLogs; ++j)
{
MicroProfileThreadLog* pLog = S.Pool[j];
int64_t nStartTickBase = pLog->nGpu ? nTickStartGpu : nTickStart;
uint32_t nLogStart = S.Frames[nFrameIndex].nLogStart[j];
uint32_t nLogEnd = S.Frames[nFrameIndexNext].nLogStart[j];
float fToMsCpu = MicroProfileTickToMsMultiplier(nTicksPerSecondCpu);
float fToMsBase = MicroProfileTickToMsMultiplier(pLog->nGpu ? nTicksPerSecondGpu : nTicksPerSecondCpu);
MicroProfilePrintf(CB, Handle, "var ts_%d_%d = [", i, j);
if(nLogStart != nLogEnd)
{
uint32_t k = nLogStart;
uint32_t nLogType = MicroProfileLogType(pLog->Log[k]);
float fToMs = nLogType == MP_LOG_GPU_EXTRA ? fToMsCpu : fToMsBase;
int64_t nStartTick = nLogType == MP_LOG_GPU_EXTRA ? nTickStart : nStartTickBase;
float fTime = nLogType == MP_LOG_META ? 0.f : MicroProfileLogTickDifference(nStartTick, pLog->Log[k]) * fToMs;
MicroProfilePrintf(CB, Handle, "%f", fTime);
for(k = (k+1) % MICROPROFILE_BUFFER_SIZE; k != nLogEnd; k = (k+1) % MICROPROFILE_BUFFER_SIZE)
{
uint32_t nLogType = MicroProfileLogType(pLog->Log[k]);
float fToMs = nLogType == MP_LOG_GPU_EXTRA ? fToMsCpu : fToMsBase;
nStartTick = nLogType == MP_LOG_GPU_EXTRA ? nTickStart : nStartTickBase;
float fTime = nLogType == MP_LOG_META ? 0.f : MicroProfileLogTickDifference(nStartTick, pLog->Log[k]) * fToMs;
MicroProfilePrintf(CB, Handle, ",%f", fTime);
}
}
MicroProfilePrintf(CB, Handle, "];\n");
MicroProfilePrintf(CB, Handle, "var tt_%d_%d = [", i, j);
if(nLogStart != nLogEnd)
{
uint32_t k = nLogStart;
MicroProfilePrintf(CB, Handle, "%d", MicroProfileLogType(pLog->Log[k]));
for(k = (k+1) % MICROPROFILE_BUFFER_SIZE; k != nLogEnd; k = (k+1) % MICROPROFILE_BUFFER_SIZE)
{
uint32_t nLogType = MicroProfileLogType(pLog->Log[k]);
if(nLogType == MP_LOG_META)
{
//for meta, store the count + 3, which is the tick part
nLogType = 3 + MicroProfileLogGetTick(pLog->Log[k]);
}
MicroProfilePrintf(CB, Handle, ",%d", nLogType);
}
}
MicroProfilePrintf(CB, Handle, "];\n");
MicroProfilePrintf(CB, Handle, "var ti_%d_%d = [", i, j);
if(nLogStart != nLogEnd)
{
uint32_t k = nLogStart;
MicroProfilePrintf(CB, Handle, "%d", (uint32_t)MicroProfileLogTimerIndex(pLog->Log[k]));
for(k = (k+1) % MICROPROFILE_BUFFER_SIZE; k != nLogEnd; k = (k+1) % MICROPROFILE_BUFFER_SIZE)
{
uint32_t nTimerIndex = (uint32_t)MicroProfileLogTimerIndex(pLog->Log[k]);
MicroProfilePrintf(CB, Handle, ",%d", nTimerIndex);
nTimerCounter[nTimerIndex]++;
}
}
MicroProfilePrintf(CB, Handle, "];\n");
}
MicroProfilePrintf(CB, Handle, "var ts%d = [", i);
for(uint32_t j = 0; j < S.nNumLogs; ++j)
{
MicroProfilePrintf(CB, Handle, "ts_%d_%d,", i, j);
}
MicroProfilePrintf(CB, Handle, "];\n");
MicroProfilePrintf(CB, Handle, "var tt%d = [", i);
for(uint32_t j = 0; j < S.nNumLogs; ++j)
{
MicroProfilePrintf(CB, Handle, "tt_%d_%d,", i, j);
}
MicroProfilePrintf(CB, Handle, "];\n");
MicroProfilePrintf(CB, Handle, "var ti%d = [", i);
for(uint32_t j = 0; j < S.nNumLogs; ++j)
{
MicroProfilePrintf(CB, Handle, "ti_%d_%d,", i, j);
}
MicroProfilePrintf(CB, Handle, "];\n");
int64_t nFrameStart = S.Frames[nFrameIndex].nFrameStartCpu;
int64_t nFrameEnd = S.Frames[nFrameIndexNext].nFrameStartCpu;
float fToMs = MicroProfileTickToMsMultiplier(nTicksPerSecondCpu);
float fFrameMs = MicroProfileLogTickDifference(nTickStart, nFrameStart) * fToMs;
float fFrameEndMs = MicroProfileLogTickDifference(nTickStart, nFrameEnd) * fToMs;
float fFrameGpuMs = 0;
float fFrameGpuEndMs = 0;
if(nTickReference)
{
fFrameGpuMs = MicroProfileLogTickDifference(nTickStartGpu, S.Frames[nFrameIndex].nFrameStartGpu) * fToMsGPU;
fFrameGpuEndMs = MicroProfileLogTickDifference(nTickStartGpu, S.Frames[nFrameIndexNext].nFrameStartGpu) * fToMsGPU;
}
MicroProfilePrintf(CB, Handle, "Frames[%d] = MakeFrame(%d, %f, %f, %f, %f, ts%d, tt%d, ti%d);\n", i, 0, fFrameMs, fFrameEndMs, fFrameGpuMs, fFrameGpuEndMs, i, i, i);
}
uint32_t nContextSwitchStart = 0;
uint32_t nContextSwitchEnd = 0;
MicroProfileContextSwitchSearch(&nContextSwitchStart, &nContextSwitchEnd, nTickStart, nTickEnd);
uint32_t nWrittenBefore = S.nWebServerDataSent;
MicroProfilePrintf(CB, Handle, "var CSwitchThreadInOutCpu = [");
for(uint32_t j = nContextSwitchStart; j != nContextSwitchEnd; j = (j+1) % MICROPROFILE_CONTEXT_SWITCH_BUFFER_SIZE)
{
MicroProfileContextSwitch CS = S.ContextSwitch[j];
int nCpu = CS.nCpu;
MicroProfilePrintf(CB, Handle, "%d,%d,%d,", CS.nThreadIn, CS.nThreadOut, nCpu);
}
MicroProfilePrintf(CB, Handle, "];\n");
MicroProfilePrintf(CB, Handle, "var CSwitchTime = [");
float fToMsCpu = MicroProfileTickToMsMultiplier(MicroProfileTicksPerSecondCpu());
for(uint32_t j = nContextSwitchStart; j != nContextSwitchEnd; j = (j+1) % MICROPROFILE_CONTEXT_SWITCH_BUFFER_SIZE)
{
MicroProfileContextSwitch CS = S.ContextSwitch[j];
float fTime = MicroProfileLogTickDifference(nTickStart, CS.nTicks) * fToMsCpu;
MicroProfilePrintf(CB, Handle, "%f,", fTime);
}
MicroProfilePrintf(CB, Handle, "];\n");
uint32_t nWrittenAfter = S.nWebServerDataSent;
MicroProfilePrintf(CB, Handle, "//CSwitch Size %d\n", nWrittenAfter - nWrittenBefore);
for(size_t i = 0; i < g_MicroProfileHtml_end_count; ++i)
{
CB(Handle, g_MicroProfileHtml_end_sizes[i]-1, g_MicroProfileHtml_end[i]);
}
uint32_t* nGroupCounter = (uint32_t*)alloca(sizeof(uint32_t)* S.nGroupCount);
memset(nGroupCounter, 0, sizeof(uint32_t) * S.nGroupCount);
for(uint32_t i = 0; i < S.nTotalTimers; ++i)
{
uint32_t nGroupIndex = S.TimerInfo[i].nGroupIndex;
nGroupCounter[nGroupIndex] += nTimerCounter[i];
}
uint32_t* nGroupCounterSort = (uint32_t*)alloca(sizeof(uint32_t)* S.nGroupCount);
uint32_t* nTimerCounterSort = (uint32_t*)alloca(sizeof(uint32_t)* S.nTotalTimers);
for(uint32_t i = 0; i < S.nGroupCount; ++i)
{
nGroupCounterSort[i] = i;
}
for(uint32_t i = 0; i < S.nTotalTimers; ++i)
{
nTimerCounterSort[i] = i;
}
std::sort(nGroupCounterSort, nGroupCounterSort + S.nGroupCount,
[nGroupCounter](const uint32_t l, const uint32_t r)
{
return nGroupCounter[l] > nGroupCounter[r];
}
);
std::sort(nTimerCounterSort, nTimerCounterSort + S.nTotalTimers,
[nTimerCounter](const uint32_t l, const uint32_t r)
{
return nTimerCounter[l] > nTimerCounter[r];
}
);
MicroProfilePrintf(CB, Handle, "\n<!--\nMarker Per Group\n");
for(uint32_t i = 0; i < S.nGroupCount; ++i)
{
uint32_t idx = nGroupCounterSort[i];
MicroProfilePrintf(CB, Handle, "%8d:%s\n", nGroupCounter[idx], S.GroupInfo[idx].pName);
}
MicroProfilePrintf(CB, Handle, "Marker Per Timer\n");
for(uint32_t i = 0; i < S.nTotalTimers; ++i)
{
uint32_t idx = nTimerCounterSort[i];
MicroProfilePrintf(CB, Handle, "%8d:%s(%s)\n", nTimerCounter[idx], S.TimerInfo[idx].pName, S.GroupInfo[S.TimerInfo[idx].nGroupIndex].pName);
}
MicroProfilePrintf(CB, Handle, "\n-->\n");
S.nActiveGroup = nActiveGroup;
S.nRunning = nRunning;
#if MICROPROFILE_DEBUG
int64_t nTicksEnd = MP_TICK();
float fMs = fToMsCpu * (nTicksEnd - S.nPauseTicks);
printf("html dump took %6.2fms\n", fMs);
#endif
}
void MicroProfileWriteFile(void* Handle, size_t nSize, const char* pData)
{
fwrite(pData, nSize, 1, (FILE*)Handle);
}
void MicroProfileDumpToFile()
{
std::lock_guard<std::recursive_mutex> Lock(MicroProfileMutex());
if(S.nDumpFileNextFrame&1)
{
FILE* F = fopen(S.HtmlDumpPath, "w");
if(F)
{
MicroProfileDumpHtml(MicroProfileWriteFile, F, MICROPROFILE_WEBSERVER_MAXFRAMES, S.HtmlDumpPath);
fclose(F);
}
}
if(S.nDumpFileNextFrame&2)
{
FILE* F = fopen(S.CsvDumpPath, "w");
if(F)
{
MicroProfileDumpCsv(MicroProfileWriteFile, F, MICROPROFILE_WEBSERVER_MAXFRAMES);
fclose(F);
}
}
}
void MicroProfileFlushSocket(MpSocket Socket)
{
send(Socket, &S.WebServerBuffer[0], S.WebServerPut, 0);
S.WebServerPut = 0;
}
void MicroProfileWriteSocket(void* Handle, size_t nSize, const char* pData)
{
S.nWebServerDataSent += nSize;
MpSocket Socket = *(MpSocket*)Handle;
if(nSize > MICROPROFILE_WEBSERVER_SOCKET_BUFFER_SIZE / 2)
{
MicroProfileFlushSocket(Socket);
send(Socket, pData, nSize, 0);
}
else
{
memcpy(&S.WebServerBuffer[S.WebServerPut], pData, nSize);
S.WebServerPut += nSize;
if(S.WebServerPut > MICROPROFILE_WEBSERVER_SOCKET_BUFFER_SIZE/2)
{
MicroProfileFlushSocket(Socket);
}
}
}
#if MICROPROFILE_MINIZ
#ifndef MICROPROFILE_COMPRESS_BUFFER_SIZE
#define MICROPROFILE_COMPRESS_BUFFER_SIZE (256<<10)
#endif
#define MICROPROFILE_COMPRESS_CHUNK (MICROPROFILE_COMPRESS_BUFFER_SIZE/2)
struct MicroProfileCompressedSocketState
{
unsigned char DeflateOut[MICROPROFILE_COMPRESS_CHUNK];
unsigned char DeflateIn[MICROPROFILE_COMPRESS_CHUNK];
mz_stream Stream;
MpSocket Socket;
uint32_t nSize;
uint32_t nCompressedSize;
uint32_t nFlushes;
uint32_t nMemmoveBytes;
};
void MicroProfileCompressedSocketFlush(MicroProfileCompressedSocketState* pState)
{
mz_stream& Stream = pState->Stream;
unsigned char* pSendStart = &pState->DeflateOut[0];
unsigned char* pSendEnd = &pState->DeflateOut[MICROPROFILE_COMPRESS_CHUNK - Stream.avail_out];
if(pSendStart != pSendEnd)
{
send(pState->Socket, (const char*)pSendStart, pSendEnd - pSendStart, 0);
pState->nCompressedSize += pSendEnd - pSendStart;
}
Stream.next_out = &pState->DeflateOut[0];
Stream.avail_out = MICROPROFILE_COMPRESS_CHUNK;
}
void MicroProfileCompressedSocketStart(MicroProfileCompressedSocketState* pState, MpSocket Socket)
{
mz_stream& Stream = pState->Stream;
memset(&Stream, 0, sizeof(Stream));
Stream.next_out = &pState->DeflateOut[0];
Stream.avail_out = MICROPROFILE_COMPRESS_CHUNK;
Stream.next_in = &pState->DeflateIn[0];
Stream.avail_in = 0;
mz_deflateInit(&Stream, Z_DEFAULT_COMPRESSION);
pState->Socket = Socket;
pState->nSize = 0;
pState->nCompressedSize = 0;
pState->nFlushes = 0;
pState->nMemmoveBytes = 0;
}
void MicroProfileCompressedSocketFinish(MicroProfileCompressedSocketState* pState)
{
mz_stream& Stream = pState->Stream;
MicroProfileCompressedSocketFlush(pState);
int r = mz_deflate(&Stream, MZ_FINISH);
MP_ASSERT(r == MZ_STREAM_END);
MicroProfileCompressedSocketFlush(pState);
r = mz_deflateEnd(&Stream);
MP_ASSERT(r == MZ_OK);
}
void MicroProfileCompressedWriteSocket(void* Handle, size_t nSize, const char* pData)
{
MicroProfileCompressedSocketState* pState = (MicroProfileCompressedSocketState*)Handle;
mz_stream& Stream = pState->Stream;
const unsigned char* pDeflateInEnd = Stream.next_in + Stream.avail_in;
const unsigned char* pDeflateInStart = &pState->DeflateIn[0];
const unsigned char* pDeflateInRealEnd = &pState->DeflateIn[MICROPROFILE_COMPRESS_CHUNK];
pState->nSize += nSize;
if(nSize <= pDeflateInRealEnd - pDeflateInEnd)
{
memcpy((void*)pDeflateInEnd, pData, nSize);
Stream.avail_in += nSize;
MP_ASSERT(Stream.next_in + Stream.avail_in <= pDeflateInRealEnd);
return;
}
int Flush = 0;
while(nSize)
{
pDeflateInEnd = Stream.next_in + Stream.avail_in;
if(Flush)
{
pState->nFlushes++;
MicroProfileCompressedSocketFlush(pState);
pDeflateInRealEnd = &pState->DeflateIn[MICROPROFILE_COMPRESS_CHUNK];
if(pDeflateInEnd == pDeflateInRealEnd)
{
if(Stream.avail_in)
{
MP_ASSERT(pDeflateInStart != Stream.next_in);
memmove((void*)pDeflateInStart, Stream.next_in, Stream.avail_in);
pState->nMemmoveBytes += Stream.avail_in;
}
Stream.next_in = pDeflateInStart;
pDeflateInEnd = Stream.next_in + Stream.avail_in;
}
}
size_t nSpace = pDeflateInRealEnd - pDeflateInEnd;
size_t nBytes = MicroProfileMin(nSpace, nSize);
MP_ASSERT(nBytes + pDeflateInEnd <= pDeflateInRealEnd);
memcpy((void*)pDeflateInEnd, pData, nBytes);
Stream.avail_in += nBytes;
nSize -= nBytes;
pData += nBytes;
int r = mz_deflate(&Stream, MZ_NO_FLUSH);
Flush = r == MZ_BUF_ERROR || nBytes == 0 || Stream.avail_out == 0 ? 1 : 0;
MP_ASSERT(r == MZ_BUF_ERROR || r == MZ_OK);
if(r == MZ_BUF_ERROR)
{
r = mz_deflate(&Stream, MZ_SYNC_FLUSH);
}
}
}
#endif
#ifndef MicroProfileSetNonBlocking //fcntl doesnt work on a some unix like platforms..
void MicroProfileSetNonBlocking(MpSocket Socket, int NonBlocking)
{
#ifdef _WIN32
u_long nonBlocking = NonBlocking ? 1 : 0;
ioctlsocket(Socket, FIONBIO, &nonBlocking);
#else
int Options = fcntl(Socket, F_GETFL);
if(NonBlocking)
{
fcntl(Socket, F_SETFL, Options|O_NONBLOCK);
}
else
{
fcntl(Socket, F_SETFL, Options&(~O_NONBLOCK));
}
#endif
}
#endif
void MicroProfileWebServerStart()
{
#ifdef _WIN32
WSADATA wsa;
if(WSAStartup(MAKEWORD(2, 2), &wsa))
{
S.ListenerSocket = -1;
return;
}
#endif
S.ListenerSocket = socket(PF_INET, SOCK_STREAM, 6);
MP_ASSERT(!MP_INVALID_SOCKET(S.ListenerSocket));
MicroProfileSetNonBlocking(S.ListenerSocket, 1);
S.nWebServerPort = (uint32_t)-1;
struct sockaddr_in Addr;
Addr.sin_family = AF_INET;
Addr.sin_addr.s_addr = INADDR_ANY;
for(int i = 0; i < 20; ++i)
{
Addr.sin_port = htons(MICROPROFILE_WEBSERVER_PORT+i);
if(0 == bind(S.ListenerSocket, (sockaddr*)&Addr, sizeof(Addr)))
{
S.nWebServerPort = MICROPROFILE_WEBSERVER_PORT+i;
break;
}
}
listen(S.ListenerSocket, 8);
}
void MicroProfileWebServerStop()
{
#ifdef _WIN32
closesocket(S.ListenerSocket);
WSACleanup();
#else
close(S.ListenerSocket);
#endif
}
int MicroProfileParseGet(const char* pGet)
{
const char* pStart = pGet;
while(*pGet != '\0')
{
if(*pGet < '0' || *pGet > '9')
return 0;
pGet++;
}
int nFrames = atoi(pStart);
if(nFrames)
{
return nFrames;
}
else
{
return MICROPROFILE_WEBSERVER_MAXFRAMES;
}
}
bool MicroProfileWebServerUpdate()
{
MICROPROFILE_SCOPEI("MicroProfile", "Webserver-update", -1);
MpSocket Connection = accept(S.ListenerSocket, 0, 0);
bool bServed = false;
if(!MP_INVALID_SOCKET(Connection))
{
std::lock_guard<std::recursive_mutex> Lock(MicroProfileMutex());
char Req[8192];
MicroProfileSetNonBlocking(Connection, 0);
int nReceived = recv(Connection, Req, sizeof(Req)-1, 0);
if(nReceived > 0)
{
Req[nReceived] = '\0';
#if MICROPROFILE_MINIZ
#define MICROPROFILE_HTML_HEADER "HTTP/1.0 200 OK\r\nContent-Type: text/html\r\nContent-Encoding: deflate\r\nExpires: Tue, 01 Jan 2199 16:00:00 GMT\r\n\r\n"
#else
#define MICROPROFILE_HTML_HEADER "HTTP/1.0 200 OK\r\nContent-Type: text/html\r\nExpires: Tue, 01 Jan 2199 16:00:00 GMT\r\n\r\n"
#endif
char* pHttp = strstr(Req, "HTTP/");
char* pGet = strstr(Req, "GET /");
char* pHost = strstr(Req, "Host: ");
auto Terminate = [](char* pString)
{
char* pEnd = pString;
while(*pEnd != '\0')
{
if(*pEnd == '\r' || *pEnd == '\n' || *pEnd == ' ')
{
*pEnd = '\0';
return;
}
pEnd++;
}
};
if(pHost)
{
pHost += sizeof("Host: ")-1;
Terminate(pHost);
}
if(pHttp && pGet)
{
*pHttp = '\0';
pGet += sizeof("GET /")-1;
Terminate(pGet);
int nFrames = MicroProfileParseGet(pGet);
if(nFrames)
{
uint64_t nTickStart = MP_TICK();
send(Connection, MICROPROFILE_HTML_HEADER, sizeof(MICROPROFILE_HTML_HEADER)-1, 0);
uint64_t nDataStart = S.nWebServerDataSent;
S.WebServerPut = 0;
#if 0 == MICROPROFILE_MINIZ
MicroProfileDumpHtml(MicroProfileWriteSocket, &Connection, nFrames, pHost);
uint64_t nDataEnd = S.nWebServerDataSent;
uint64_t nTickEnd = MP_TICK();
uint64_t nDiff = (nTickEnd - nTickStart);
float fMs = MicroProfileTickToMsMultiplier(MicroProfileTicksPerSecondCpu()) * nDiff;
int nKb = ((nDataEnd-nDataStart)>>10) + 1;
int nCompressedKb = nKb;
MicroProfilePrintf(MicroProfileWriteSocket, &Connection, "\n<!-- Sent %dkb in %.2fms-->\n\n",nKb, fMs);
MicroProfileFlushSocket(Connection);
#else
MicroProfileCompressedSocketState CompressState;
MicroProfileCompressedSocketStart(&CompressState, Connection);
MicroProfileDumpHtml(MicroProfileCompressedWriteSocket, &CompressState, nFrames, pHost);
S.nWebServerDataSent += CompressState.nSize;
uint64_t nDataEnd = S.nWebServerDataSent;
uint64_t nTickEnd = MP_TICK();
uint64_t nDiff = (nTickEnd - nTickStart);
float fMs = MicroProfileTickToMsMultiplier(MicroProfileTicksPerSecondCpu()) * nDiff;
int nKb = ((nDataEnd-nDataStart)>>10) + 1;
int nCompressedKb = ((CompressState.nCompressedSize)>>10) + 1;
MicroProfilePrintf(MicroProfileCompressedWriteSocket, &CompressState, "\n<!-- Sent %dkb(compressed %dkb) in %.2fms-->\n\n", nKb, nCompressedKb, fMs);
MicroProfileCompressedSocketFinish(&CompressState);
MicroProfileFlushSocket(Connection);
#endif
#if MICROPROFILE_DEBUG
printf("\n<!-- Sent %dkb(compressed %dkb) in %.2fms-->\n\n", nKb, nCompressedKb, fMs);
#endif
}
}
}
#ifdef _WIN32
closesocket(Connection);
#else
close(Connection);
#endif
}
return bServed;
}
#endif
#if MICROPROFILE_CONTEXT_SWITCH_TRACE
//functions that need to be implemented per platform.
void* MicroProfileTraceThread(void* unused);
bool MicroProfileIsLocalThread(uint32_t nThreadId);
void MicroProfileStartContextSwitchTrace()
{
if(!S.bContextSwitchRunning)
{
S.bContextSwitchRunning = true;
S.bContextSwitchStop = false;
MicroProfileThreadStart(&S.ContextSwitchThread, MicroProfileTraceThread);
}
}
void MicroProfileStopContextSwitchTrace()
{
if(S.bContextSwitchRunning)
{
S.bContextSwitchStop = true;
MicroProfileThreadJoin(&S.ContextSwitchThread);
}
}
#ifdef _WIN32
#define INITGUID
#include <evntrace.h>
#include <evntcons.h>
#include <strsafe.h>
static GUID g_MicroProfileThreadClassGuid = { 0x3d6fa8d1, 0xfe05, 0x11d0, 0x9d, 0xda, 0x00, 0xc0, 0x4f, 0xd7, 0xba, 0x7c };
struct MicroProfileSCSwitch
{
uint32_t NewThreadId;
uint32_t OldThreadId;
int8_t NewThreadPriority;
int8_t OldThreadPriority;
uint8_t PreviousCState;
int8_t SpareByte;
int8_t OldThreadWaitReason;
int8_t OldThreadWaitMode;
int8_t OldThreadState;
int8_t OldThreadWaitIdealProcessor;
uint32_t NewThreadWaitTime;
uint32_t Reserved;
};
VOID WINAPI MicroProfileContextSwitchCallback(PEVENT_TRACE pEvent)
{
if (pEvent->Header.Guid == g_MicroProfileThreadClassGuid)
{
if (pEvent->Header.Class.Type == 36)
{
MicroProfileSCSwitch* pCSwitch = (MicroProfileSCSwitch*) pEvent->MofData;
if ((pCSwitch->NewThreadId != 0) || (pCSwitch->OldThreadId != 0))
{
MicroProfileContextSwitch Switch;
Switch.nThreadOut = pCSwitch->OldThreadId;
Switch.nThreadIn = pCSwitch->NewThreadId;
Switch.nCpu = pEvent->BufferContext.ProcessorNumber;
Switch.nTicks = pEvent->Header.TimeStamp.QuadPart;
MicroProfileContextSwitchPut(&Switch);
}
}
}
}
ULONG WINAPI MicroProfileBufferCallback(PEVENT_TRACE_LOGFILE Buffer)
{
return (S.bContextSwitchStop || !S.bContextSwitchRunning) ? FALSE : TRUE;
}
struct MicroProfileKernelTraceProperties : public EVENT_TRACE_PROPERTIES
{
char dummy[sizeof(KERNEL_LOGGER_NAME)];
};
void MicroProfileContextSwitchShutdownTrace()
{
TRACEHANDLE SessionHandle = 0;
MicroProfileKernelTraceProperties sessionProperties;
ZeroMemory(&sessionProperties, sizeof(sessionProperties));
sessionProperties.Wnode.BufferSize = sizeof(sessionProperties);
sessionProperties.Wnode.Flags = WNODE_FLAG_TRACED_GUID;
sessionProperties.Wnode.ClientContext = 1; //QPC clock resolution
sessionProperties.Wnode.Guid = SystemTraceControlGuid;
sessionProperties.BufferSize = 1;
sessionProperties.NumberOfBuffers = 128;
sessionProperties.EnableFlags = EVENT_TRACE_FLAG_CSWITCH;
sessionProperties.LogFileMode = EVENT_TRACE_REAL_TIME_MODE;
sessionProperties.MaximumFileSize = 0;
sessionProperties.LoggerNameOffset = sizeof(EVENT_TRACE_PROPERTIES);
sessionProperties.LogFileNameOffset = 0;
EVENT_TRACE_LOGFILE log;
ZeroMemory(&log, sizeof(log));
log.LoggerName = KERNEL_LOGGER_NAME;
log.ProcessTraceMode = 0;
TRACEHANDLE hLog = OpenTrace(&log);
if (hLog)
{
ControlTrace(SessionHandle, KERNEL_LOGGER_NAME, &sessionProperties, EVENT_TRACE_CONTROL_STOP);
}
CloseTrace(hLog);
}
void* MicroProfileTraceThread(void* unused)
{
MicroProfileContextSwitchShutdownTrace();
ULONG status = ERROR_SUCCESS;
TRACEHANDLE SessionHandle = 0;
MicroProfileKernelTraceProperties sessionProperties;
ZeroMemory(&sessionProperties, sizeof(sessionProperties));
sessionProperties.Wnode.BufferSize = sizeof(sessionProperties);
sessionProperties.Wnode.Flags = WNODE_FLAG_TRACED_GUID;
sessionProperties.Wnode.ClientContext = 1; //QPC clock resolution
sessionProperties.Wnode.Guid = SystemTraceControlGuid;
sessionProperties.BufferSize = 1;
sessionProperties.NumberOfBuffers = 128;
sessionProperties.EnableFlags = EVENT_TRACE_FLAG_CSWITCH|EVENT_TRACE_FLAG_PROCESS;
sessionProperties.LogFileMode = EVENT_TRACE_REAL_TIME_MODE;
sessionProperties.MaximumFileSize = 0;
sessionProperties.LoggerNameOffset = sizeof(EVENT_TRACE_PROPERTIES);
sessionProperties.LogFileNameOffset = 0;
status = StartTrace((PTRACEHANDLE) &SessionHandle, KERNEL_LOGGER_NAME, &sessionProperties);
if (ERROR_SUCCESS != status)
{
S.bContextSwitchRunning = false;
return 0;
}
EVENT_TRACE_LOGFILE log;
ZeroMemory(&log, sizeof(log));
log.LoggerName = KERNEL_LOGGER_NAME;
log.ProcessTraceMode = PROCESS_TRACE_MODE_REAL_TIME | PROCESS_TRACE_MODE_RAW_TIMESTAMP;
log.EventCallback = MicroProfileContextSwitchCallback;
log.BufferCallback = MicroProfileBufferCallback;
TRACEHANDLE hLog = OpenTrace(&log);
ProcessTrace(&hLog, 1, 0, 0);
CloseTrace(hLog);
MicroProfileContextSwitchShutdownTrace();
S.bContextSwitchRunning = false;
return 0;
}
bool MicroProfileIsLocalThread(uint32_t nThreadId)
{
HANDLE h = OpenThread(THREAD_QUERY_LIMITED_INFORMATION, FALSE, nThreadId);
if(h == NULL)
return false;
DWORD hProcess = GetProcessIdOfThread(h);
CloseHandle(h);
return GetCurrentProcessId() == hProcess;
}
#elif defined(__APPLE__)
#include <sys/time.h>
void* MicroProfileTraceThread(void* unused)
{
FILE* pFile = fopen("mypipe", "r");
if(!pFile)
{
printf("CONTEXT SWITCH FAILED TO OPEN FILE: make sure to run dtrace script\n");
S.bContextSwitchRunning = false;
return 0;
}
printf("STARTING TRACE THREAD\n");
char* pLine = 0;
size_t cap = 0;
size_t len = 0;
struct timeval tv;
gettimeofday(&tv, NULL);
uint64_t nsSinceEpoch = ((uint64_t)(tv.tv_sec) * 1000000 + (uint64_t)(tv.tv_usec)) * 1000;
uint64_t nTickEpoch = MP_TICK();
uint32_t nLastThread[MICROPROFILE_MAX_CONTEXT_SWITCH_THREADS] = {0};
mach_timebase_info_data_t sTimebaseInfo;
mach_timebase_info(&sTimebaseInfo);
S.bContextSwitchRunning = true;
uint64_t nProcessed = 0;
uint64_t nProcessedLast = 0;
while((len = getline(&pLine, &cap, pFile))>0 && !S.bContextSwitchStop)
{
nProcessed += len;
if(nProcessed - nProcessedLast > 10<<10)
{
nProcessedLast = nProcessed;
printf("processed %llukb %llukb\n", (nProcessed-nProcessedLast)>>10,nProcessed >>10);
}
char* pX = strchr(pLine, 'X');
if(pX)
{
int cpu = atoi(pX+1);
char* pX2 = strchr(pX + 1, 'X');
char* pX3 = strchr(pX2 + 1, 'X');
int thread = atoi(pX2+1);
char* lala;
int64_t timestamp = strtoll(pX3 + 1, &lala, 10);
MicroProfileContextSwitch Switch;
//convert to ticks.
uint64_t nDeltaNsSinceEpoch = timestamp - nsSinceEpoch;
uint64_t nDeltaTickSinceEpoch = sTimebaseInfo.numer * nDeltaNsSinceEpoch / sTimebaseInfo.denom;
uint64_t nTicks = nDeltaTickSinceEpoch + nTickEpoch;
if(cpu < MICROPROFILE_MAX_CONTEXT_SWITCH_THREADS)
{
Switch.nThreadOut = nLastThread[cpu];
Switch.nThreadIn = thread;
nLastThread[cpu] = thread;
Switch.nCpu = cpu;
Switch.nTicks = nTicks;
MicroProfileContextSwitchPut(&Switch);
}
}
}
printf("EXITING TRACE THREAD\n");
S.bContextSwitchRunning = false;
return 0;
}
bool MicroProfileIsLocalThread(uint32_t nThreadId)
{
return false;
}
#endif
#else
bool MicroProfileIsLocalThread([[maybe_unused]] uint32_t nThreadId) { return false; }
void MicroProfileStopContextSwitchTrace(){}
void MicroProfileStartContextSwitchTrace(){}
#endif
#if MICROPROFILE_GPU_TIMERS_D3D11
uint32_t MicroProfileGpuInsertTimeStamp()
{
MicroProfileD3D11Frame& Frame = S.GPU.m_QueryFrames[S.GPU.m_nQueryFrame];
if(Frame.m_nRateQueryStarted)
{
uint32_t nCurrent = (Frame.m_nQueryStart + Frame.m_nQueryCount) % MICROPROFILE_D3D_MAX_QUERIES;
uint32_t nNext = (nCurrent + 1) % MICROPROFILE_D3D_MAX_QUERIES;
if(nNext != S.GPU.m_nQueryGet)
{
Frame.m_nQueryCount++;
ID3D11Query* pQuery = (ID3D11Query*)S.GPU.m_pQueries[nCurrent];
ID3D11DeviceContext* pContext = (ID3D11DeviceContext*)S.GPU.m_pDeviceContext;
pContext->End(pQuery);
S.GPU.m_nQueryPut = nNext;
return nCurrent;
}
}
return (uint32_t)-1;
}
uint64_t MicroProfileGpuGetTimeStamp(uint32_t nIndex)
{
if(nIndex == (uint32_t)-1)
{
return (uint64_t)-1;
}
int64_t nResult = S.GPU.m_nQueryResults[nIndex];
MP_ASSERT(nResult != -1);
return nResult;
}
bool MicroProfileGpuGetData(void* pQuery, void* pData, uint32_t nDataSize)
{
HRESULT hr;
do
{
hr = ((ID3D11DeviceContext*)S.GPU.m_pDeviceContext)->GetData((ID3D11Query*)pQuery, pData, nDataSize, 0);
}while(hr == S_FALSE);
switch(hr)
{
case DXGI_ERROR_DEVICE_REMOVED:
case DXGI_ERROR_INVALID_CALL:
case E_INVALIDARG:
MP_BREAK();
return false;
}
return true;
}
uint64_t MicroProfileTicksPerSecondGpu()
{
return S.GPU.m_nQueryFrequency;
}
void MicroProfileGpuFlip()
{
MicroProfileD3D11Frame& CurrentFrame = S.GPU.m_QueryFrames[S.GPU.m_nQueryFrame];
ID3D11DeviceContext* pContext = (ID3D11DeviceContext*)S.GPU.m_pDeviceContext;
if(CurrentFrame.m_nRateQueryStarted)
{
pContext->End((ID3D11Query*)CurrentFrame.m_pRateQuery);
}
uint32_t nNextFrame = (S.GPU.m_nQueryFrame + 1) % MICROPROFILE_GPU_FRAME_DELAY;
MicroProfileD3D11Frame& OldFrame = S.GPU.m_QueryFrames[nNextFrame];
if(OldFrame.m_nRateQueryStarted)
{
struct RateQueryResult
{
uint64_t nFrequency;
BOOL bDisjoint;
};
RateQueryResult Result;
if(MicroProfileGpuGetData(OldFrame.m_pRateQuery, &Result, sizeof(Result)))
{
if(S.GPU.m_nQueryFrequency != (int64_t)Result.nFrequency)
{
if(S.GPU.m_nQueryFrequency)
{
OutputDebugString("Query freq changing");
}
S.GPU.m_nQueryFrequency = Result.nFrequency;
}
uint32_t nStart = OldFrame.m_nQueryStart;
uint32_t nCount = OldFrame.m_nQueryCount;
for(uint32_t i = 0; i < nCount; ++i)
{
uint32_t nIndex = (i + nStart) % MICROPROFILE_D3D_MAX_QUERIES;
if(!MicroProfileGpuGetData(S.GPU.m_pQueries[nIndex], &S.GPU.m_nQueryResults[nIndex], sizeof(uint64_t)))
{
S.GPU.m_nQueryResults[nIndex] = -1;
}
}
}
else
{
uint32_t nStart = OldFrame.m_nQueryStart;
uint32_t nCount = OldFrame.m_nQueryCount;
for(uint32_t i = 0; i < nCount; ++i)
{
uint32_t nIndex = (i + nStart) % MICROPROFILE_D3D_MAX_QUERIES;
S.GPU.m_nQueryResults[nIndex] = -1;
}
}
S.GPU.m_nQueryGet = (OldFrame.m_nQueryStart + OldFrame.m_nQueryCount) % MICROPROFILE_D3D_MAX_QUERIES;
}
S.GPU.m_nQueryFrame = nNextFrame;
MicroProfileD3D11Frame& NextFrame = S.GPU.m_QueryFrames[nNextFrame];
pContext->Begin((ID3D11Query*)NextFrame.m_pRateQuery);
NextFrame.m_nQueryStart = S.GPU.m_nQueryPut;
NextFrame.m_nQueryCount = 0;
NextFrame.m_nRateQueryStarted = 1;
}
void MicroProfileGpuInitD3D11(void* pDevice_, void* pDeviceContext_)
{
ID3D11Device* pDevice = (ID3D11Device*)pDevice_;
ID3D11DeviceContext* pDeviceContext = (ID3D11DeviceContext*)pDeviceContext_;
S.GPU.m_pDeviceContext = pDeviceContext_;
D3D11_QUERY_DESC Desc;
Desc.MiscFlags = 0;
Desc.Query = D3D11_QUERY_TIMESTAMP;
for(uint32_t i = 0; i < MICROPROFILE_D3D_MAX_QUERIES; ++i)
{
HRESULT hr = pDevice->CreateQuery(&Desc, (ID3D11Query**)&S.GPU.m_pQueries[i]);
MP_ASSERT(hr == S_OK);
S.GPU.m_nQueryResults[i] = -1;
}
S.GPU.m_nQueryPut = 0;
S.GPU.m_nQueryGet = 0;
S.GPU.m_nQueryFrame = 0;
S.GPU.m_nQueryFrequency = 0;
Desc.Query = D3D11_QUERY_TIMESTAMP_DISJOINT;
for(uint32_t i = 0; i < MICROPROFILE_GPU_FRAME_DELAY; ++i)
{
S.GPU.m_QueryFrames[i].m_nQueryStart = 0;
S.GPU.m_QueryFrames[i].m_nQueryCount = 0;
S.GPU.m_QueryFrames[i].m_nRateQueryStarted = 0;
HRESULT hr = pDevice->CreateQuery(&Desc, (ID3D11Query**)&S.GPU.m_QueryFrames[i].m_pRateQuery);
MP_ASSERT(hr == S_OK);
}
}
void MicroProfileGpuShutdown()
{
for(uint32_t i = 0; i < MICROPROFILE_D3D_MAX_QUERIES; ++i)
{
((ID3D11Query*)&S.GPU.m_pQueries[i])->Release();
S.GPU.m_pQueries[i] = 0;
}
for(uint32_t i = 0; i < MICROPROFILE_GPU_FRAME_DELAY; ++i)
{
((ID3D11Query*)S.GPU.m_QueryFrames[i].m_pRateQuery)->Release();
S.GPU.m_QueryFrames[i].m_pRateQuery = 0;
}
}
int MicroProfileGetGpuTickReference(int64_t* pOutCPU, int64_t* pOutGpu)
{
return 0;
}
#elif MICROPROFILE_GPU_TIMERS_GL
void MicroProfileGpuInitGL()
{
S.GPU.GLTimerPos = 0;
glGenQueries(MICROPROFILE_GL_MAX_QUERIES, &S.GPU.GLTimers[0]);
}
uint32_t MicroProfileGpuInsertTimeStamp()
{
uint32_t nIndex = (S.GPU.GLTimerPos+1)%MICROPROFILE_GL_MAX_QUERIES;
glQueryCounter(S.GPU.GLTimers[nIndex], GL_TIMESTAMP);
S.GPU.GLTimerPos = nIndex;
return nIndex;
}
uint64_t MicroProfileGpuGetTimeStamp(uint32_t nKey)
{
uint64_t result;
glGetQueryObjectui64v(S.GPU.GLTimers[nKey], GL_QUERY_RESULT, &result);
return result;
}
uint64_t MicroProfileTicksPerSecondGpu()
{
return 1000000000ll;
}
int MicroProfileGetGpuTickReference(int64_t* pOutCpu, int64_t* pOutGpu)
{
int64_t nGpuTimeStamp;
glGetInteger64v(GL_TIMESTAMP, &nGpuTimeStamp);
if(nGpuTimeStamp)
{
*pOutCpu = MP_TICK();
*pOutGpu = nGpuTimeStamp;
#if 0 //debug test if timestamp diverges
static int64_t nTicksPerSecondCpu = MicroProfileTicksPerSecondCpu();
static int64_t nTicksPerSecondGpu = MicroProfileTicksPerSecondGpu();
static int64_t nGpuStart = 0;
static int64_t nCpuStart = 0;
if(!nCpuStart)
{
nCpuStart = *pOutCpu;
nGpuStart = *pOutGpu;
}
static int nCountDown = 100;
if(0 == nCountDown--)
{
int64_t nCurCpu = *pOutCpu;
int64_t nCurGpu = *pOutGpu;
double fDistanceCpu = (nCurCpu - nCpuStart) / (double)nTicksPerSecondCpu;
double fDistanceGpu = (nCurGpu - nGpuStart) / (double)nTicksPerSecondGpu;
char buf[254];
snprintf(buf, sizeof(buf)-1,"Distance %f %f diff %f\n", fDistanceCpu, fDistanceGpu, fDistanceCpu-fDistanceGpu);
OutputDebugString(buf);
nCountDown = 100;
}
#endif
return 1;
}
return 0;
}
#endif
#undef S
#ifdef _MSC_VER
#pragma warning(pop)
#endif
#endif
#endif
#ifdef MICROPROFILE_EMBED_HTML
#include "microprofile_html.h"
#endif