suyu/src/core/hle/kernel/k_thread.cpp

458 lines
15 KiB
C++
Raw Normal View History

2014-05-09 22:11:18 -04:00
// Copyright 2014 Citra Emulator Project / PPSSPP Project
2014-12-17 00:38:14 -05:00
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
2014-05-09 22:11:18 -04:00
#include <algorithm>
#include <cinttypes>
#include <optional>
#include <vector>
2015-05-06 03:06:12 -04:00
#include "common/assert.h"
#include "common/common_types.h"
#include "common/fiber.h"
2015-05-06 03:06:12 -04:00
#include "common/logging/log.h"
#include "common/thread_queue_list.h"
#include "core/core.h"
#include "core/cpu_manager.h"
#include "core/hardware_properties.h"
#include "core/hle/kernel/errors.h"
#include "core/hle/kernel/handle_table.h"
#include "core/hle/kernel/k_condition_variable.h"
#include "core/hle/kernel/k_scheduler.h"
#include "core/hle/kernel/k_scoped_scheduler_lock_and_sleep.h"
#include "core/hle/kernel/k_thread.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/memory/memory_layout.h"
#include "core/hle/kernel/object.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/time_manager.h"
#include "core/hle/result.h"
#include "core/memory.h"
2014-05-09 22:11:18 -04:00
#ifdef ARCHITECTURE_x86_64
#include "core/arm/dynarmic/arm_dynarmic_32.h"
#include "core/arm/dynarmic/arm_dynarmic_64.h"
#endif
namespace Kernel {
bool KThread::IsSignaled() const {
return signaled;
}
KThread::KThread(KernelCore& kernel) : KSynchronizationObject{kernel} {}
KThread::~KThread() = default;
void KThread::Stop() {
{
KScopedSchedulerLock lock(kernel);
SetState(ThreadState::Terminated);
signaled = true;
NotifyAvailable();
kernel.GlobalHandleTable().Close(global_handle);
2020-03-11 20:44:53 -04:00
if (owner_process) {
owner_process->UnregisterThread(this);
2020-03-11 20:44:53 -04:00
// Mark the TLS slot in the thread's page as free.
owner_process->FreeTLSRegion(tls_address);
}
has_exited = true;
}
global_handle = 0;
}
void KThread::Wakeup() {
KScopedSchedulerLock lock(kernel);
SetState(ThreadState::Runnable);
}
ResultCode KThread::Start() {
KScopedSchedulerLock lock(kernel);
SetState(ThreadState::Runnable);
return RESULT_SUCCESS;
}
void KThread::CancelWait() {
KScopedSchedulerLock lock(kernel);
if (GetState() != ThreadState::Waiting || !is_cancellable) {
is_sync_cancelled = true;
return;
}
2020-03-07 11:44:35 -05:00
// TODO(Blinkhawk): Implement cancel of server session
is_sync_cancelled = false;
SetSynchronizationResults(nullptr, ERR_SYNCHRONIZATION_CANCELED);
SetState(ThreadState::Runnable);
}
static void ResetThreadContext32(Core::ARM_Interface::ThreadContext32& context, u32 stack_top,
u32 entry_point, u32 arg) {
context = {};
context.cpu_registers[0] = arg;
context.cpu_registers[15] = entry_point;
context.cpu_registers[13] = stack_top;
}
static void ResetThreadContext64(Core::ARM_Interface::ThreadContext64& context, VAddr stack_top,
VAddr entry_point, u64 arg) {
context = {};
context.cpu_registers[0] = arg;
context.pc = entry_point;
context.sp = stack_top;
2018-12-17 18:04:02 -05:00
// TODO(merry): Perform a hardware test to determine the below value.
2020-04-19 03:37:20 -04:00
context.fpcr = 0;
}
std::shared_ptr<Common::Fiber>& KThread::GetHostContext() {
return host_context;
}
ResultVal<std::shared_ptr<KThread>> KThread::Create(Core::System& system, ThreadType type_flags,
std::string name, VAddr entry_point,
u32 priority, u64 arg, s32 processor_id,
VAddr stack_top, Process* owner_process) {
std::function<void(void*)> init_func = Core::CpuManager::GetGuestThreadStartFunc();
void* init_func_parameter = system.GetCpuManager().GetStartFuncParamater();
return Create(system, type_flags, name, entry_point, priority, arg, processor_id, stack_top,
owner_process, std::move(init_func), init_func_parameter);
}
ResultVal<std::shared_ptr<KThread>> KThread::Create(Core::System& system, ThreadType type_flags,
std::string name, VAddr entry_point,
u32 priority, u64 arg, s32 processor_id,
VAddr stack_top, Process* owner_process,
std::function<void(void*)>&& thread_start_func,
void* thread_start_parameter) {
auto& kernel = system.Kernel();
// Check if priority is in ranged. Lowest priority -> highest priority id.
if (priority > THREADPRIO_LOWEST) {
2018-07-02 12:13:26 -04:00
LOG_ERROR(Kernel_SVC, "Invalid thread priority: {}", priority);
return ERR_INVALID_THREAD_PRIORITY;
}
if (processor_id > THREADPROCESSORID_MAX) {
2018-07-02 12:13:26 -04:00
LOG_ERROR(Kernel_SVC, "Invalid processor id: {}", processor_id);
return ERR_INVALID_PROCESSOR_ID;
}
if (owner_process) {
if (!system.Memory().IsValidVirtualAddress(*owner_process, entry_point)) {
LOG_ERROR(Kernel_SVC, "(name={}): invalid entry {:016X}", name, entry_point);
// TODO (bunnei): Find the correct error code to use here
return RESULT_UNKNOWN;
}
}
std::shared_ptr<KThread> thread = std::make_shared<KThread>(kernel);
thread->thread_id = kernel.CreateNewThreadID();
thread->thread_state = ThreadState::Initialized;
thread->entry_point = entry_point;
thread->stack_top = stack_top;
thread->disable_count = 1;
thread->tpidr_el0 = 0;
thread->current_priority = priority;
thread->base_priority = priority;
thread->lock_owner = nullptr;
thread->schedule_count = -1;
thread->last_scheduled_tick = 0;
thread->processor_id = processor_id;
thread->ideal_core = processor_id;
thread->affinity_mask.SetAffinity(processor_id, true);
thread->name = std::move(name);
thread->global_handle = kernel.GlobalHandleTable().Create(thread).Unwrap();
thread->owner_process = owner_process;
thread->type = type_flags;
thread->signaled = false;
auto& scheduler = kernel.GlobalSchedulerContext();
scheduler.AddThread(thread);
if (owner_process) {
thread->tls_address = thread->owner_process->CreateTLSRegion();
thread->owner_process->RegisterThread(thread.get());
} else {
thread->tls_address = 0;
}
ResetThreadContext32(thread->context_32, static_cast<u32>(stack_top),
static_cast<u32>(entry_point), static_cast<u32>(arg));
ResetThreadContext64(thread->context_64, stack_top, entry_point, arg);
thread->host_context =
std::make_shared<Common::Fiber>(std::move(thread_start_func), thread_start_parameter);
return MakeResult<std::shared_ptr<KThread>>(std::move(thread));
}
void KThread::SetBasePriority(u32 priority) {
ASSERT_MSG(priority <= THREADPRIO_LOWEST && priority >= THREADPRIO_HIGHEST,
"Invalid priority value.");
KScopedSchedulerLock lock(kernel);
// Change our base priority.
base_priority = priority;
// Perform a priority restoration.
RestorePriority(kernel, this);
}
void KThread::SetSynchronizationResults(KSynchronizationObject* object, ResultCode result) {
signaling_object = object;
signaling_result = result;
}
VAddr KThread::GetCommandBufferAddress() const {
// Offset from the start of TLS at which the IPC command buffer begins.
constexpr u64 command_header_offset = 0x80;
return GetTLSAddress() + command_header_offset;
}
void KThread::SetState(ThreadState state) {
KScopedSchedulerLock sl(kernel);
// Clear debugging state
SetMutexWaitAddressForDebugging({});
SetWaitReasonForDebugging({});
const ThreadState old_state = thread_state;
thread_state =
static_cast<ThreadState>((old_state & ~ThreadState::Mask) | (state & ThreadState::Mask));
if (thread_state != old_state) {
KScheduler::OnThreadStateChanged(kernel, this, old_state);
}
}
void KThread::AddWaiterImpl(KThread* thread) {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
// Find the right spot to insert the waiter.
auto it = waiter_list.begin();
while (it != waiter_list.end()) {
if (it->GetPriority() > thread->GetPriority()) {
break;
}
it++;
}
// Keep track of how many kernel waiters we have.
if (Memory::IsKernelAddressKey(thread->GetAddressKey())) {
ASSERT((num_kernel_waiters++) >= 0);
}
// Insert the waiter.
waiter_list.insert(it, *thread);
thread->SetLockOwner(this);
}
void KThread::RemoveWaiterImpl(KThread* thread) {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
// Keep track of how many kernel waiters we have.
if (Memory::IsKernelAddressKey(thread->GetAddressKey())) {
ASSERT((num_kernel_waiters--) > 0);
}
// Remove the waiter.
waiter_list.erase(waiter_list.iterator_to(*thread));
thread->SetLockOwner(nullptr);
}
void KThread::RestorePriority(KernelCore& kernel, KThread* thread) {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
while (true) {
// We want to inherit priority where possible.
s32 new_priority = thread->GetBasePriority();
if (thread->HasWaiters()) {
new_priority = std::min(new_priority, thread->waiter_list.front().GetPriority());
}
// If the priority we would inherit is not different from ours, don't do anything.
if (new_priority == thread->GetPriority()) {
return;
}
// Ensure we don't violate condition variable red black tree invariants.
if (auto* cv_tree = thread->GetConditionVariableTree(); cv_tree != nullptr) {
BeforeUpdatePriority(kernel, cv_tree, thread);
}
// Change the priority.
const s32 old_priority = thread->GetPriority();
thread->SetPriority(new_priority);
// Restore the condition variable, if relevant.
if (auto* cv_tree = thread->GetConditionVariableTree(); cv_tree != nullptr) {
AfterUpdatePriority(kernel, cv_tree, thread);
}
// Update the scheduler.
KScheduler::OnThreadPriorityChanged(kernel, thread, old_priority);
// Keep the lock owner up to date.
KThread* lock_owner = thread->GetLockOwner();
if (lock_owner == nullptr) {
return;
}
// Update the thread in the lock owner's sorted list, and continue inheriting.
lock_owner->RemoveWaiterImpl(thread);
lock_owner->AddWaiterImpl(thread);
thread = lock_owner;
}
}
void KThread::AddWaiter(KThread* thread) {
AddWaiterImpl(thread);
RestorePriority(kernel, this);
}
void KThread::RemoveWaiter(KThread* thread) {
RemoveWaiterImpl(thread);
RestorePriority(kernel, this);
}
KThread* KThread::RemoveWaiterByKey(s32* out_num_waiters, VAddr key) {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
s32 num_waiters{};
KThread* next_lock_owner{};
auto it = waiter_list.begin();
while (it != waiter_list.end()) {
if (it->GetAddressKey() == key) {
KThread* thread = std::addressof(*it);
// Keep track of how many kernel waiters we have.
if (Memory::IsKernelAddressKey(thread->GetAddressKey())) {
ASSERT((num_kernel_waiters--) > 0);
}
it = waiter_list.erase(it);
// Update the next lock owner.
if (next_lock_owner == nullptr) {
next_lock_owner = thread;
next_lock_owner->SetLockOwner(nullptr);
} else {
next_lock_owner->AddWaiterImpl(thread);
}
num_waiters++;
} else {
it++;
}
}
// Do priority updates, if we have a next owner.
if (next_lock_owner) {
RestorePriority(kernel, this);
RestorePriority(kernel, next_lock_owner);
}
// Return output.
*out_num_waiters = num_waiters;
return next_lock_owner;
}
ResultCode KThread::SetActivity(ThreadActivity value) {
KScopedSchedulerLock lock(kernel);
2020-03-07 11:44:35 -05:00
auto sched_status = GetState();
2020-03-07 11:44:35 -05:00
if (sched_status != ThreadState::Runnable && sched_status != ThreadState::Waiting) {
2020-03-07 11:44:35 -05:00
return ERR_INVALID_STATE;
}
if (IsTerminationRequested()) {
2020-03-07 11:44:35 -05:00
return RESULT_SUCCESS;
}
if (value == ThreadActivity::Paused) {
if ((pausing_state & static_cast<u32>(ThreadSchedFlags::ThreadPauseFlag)) != 0) {
2020-03-07 11:44:35 -05:00
return ERR_INVALID_STATE;
}
2020-03-07 11:44:35 -05:00
AddSchedulingFlag(ThreadSchedFlags::ThreadPauseFlag);
} else {
if ((pausing_state & static_cast<u32>(ThreadSchedFlags::ThreadPauseFlag)) == 0) {
2020-03-07 11:44:35 -05:00
return ERR_INVALID_STATE;
}
RemoveSchedulingFlag(ThreadSchedFlags::ThreadPauseFlag);
}
2020-03-07 11:44:35 -05:00
return RESULT_SUCCESS;
}
ResultCode KThread::Sleep(s64 nanoseconds) {
Handle event_handle{};
{
KScopedSchedulerLockAndSleep lock(kernel, event_handle, this, nanoseconds);
SetState(ThreadState::Waiting);
SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::Sleep);
}
if (event_handle != InvalidHandle) {
auto& time_manager = kernel.TimeManager();
time_manager.UnscheduleTimeEvent(event_handle);
}
return RESULT_SUCCESS;
}
void KThread::AddSchedulingFlag(ThreadSchedFlags flag) {
const auto old_state = GetRawState();
2020-03-07 11:44:35 -05:00
pausing_state |= static_cast<u32>(flag);
const auto base_scheduling = GetState();
thread_state = base_scheduling | static_cast<ThreadState>(pausing_state);
KScheduler::OnThreadStateChanged(kernel, this, old_state);
2020-03-07 11:44:35 -05:00
}
void KThread::RemoveSchedulingFlag(ThreadSchedFlags flag) {
const auto old_state = GetRawState();
2020-03-07 11:44:35 -05:00
pausing_state &= ~static_cast<u32>(flag);
const auto base_scheduling = GetState();
thread_state = base_scheduling | static_cast<ThreadState>(pausing_state);
KScheduler::OnThreadStateChanged(kernel, this, old_state);
2020-03-07 11:44:35 -05:00
}
ResultCode KThread::SetCoreAndAffinityMask(s32 new_core, u64 new_affinity_mask) {
KScopedSchedulerLock lock(kernel);
2019-06-19 09:11:18 -04:00
const auto HighestSetCore = [](u64 mask, u32 max_cores) {
for (s32 core = static_cast<s32>(max_cores - 1); core >= 0; core--) {
2019-06-19 09:11:18 -04:00
if (((mask >> core) & 1) != 0) {
return core;
2019-06-19 09:11:18 -04:00
}
}
return -1;
};
2019-06-19 09:11:18 -04:00
const bool use_override = affinity_override_count != 0;
if (new_core == THREADPROCESSORID_DONT_UPDATE) {
new_core = use_override ? ideal_core_override : ideal_core;
2019-10-12 10:13:25 -04:00
if ((new_affinity_mask & (1ULL << new_core)) == 0) {
2020-04-29 00:53:53 -04:00
LOG_ERROR(Kernel, "New affinity mask is incorrect! new_core={}, new_affinity_mask={}",
new_core, new_affinity_mask);
return ERR_INVALID_COMBINATION;
}
}
if (use_override) {
ideal_core_override = new_core;
} else {
const auto old_affinity_mask = affinity_mask;
affinity_mask.SetAffinityMask(new_affinity_mask);
ideal_core = new_core;
if (old_affinity_mask.GetAffinityMask() != new_affinity_mask) {
2019-06-19 09:11:18 -04:00
const s32 old_core = processor_id;
if (processor_id >= 0 && !affinity_mask.GetAffinity(processor_id)) {
2020-10-20 22:07:39 -04:00
if (static_cast<s32>(ideal_core) < 0) {
processor_id = HighestSetCore(affinity_mask.GetAffinityMask(),
Core::Hardware::NUM_CPU_CORES);
} else {
processor_id = ideal_core;
}
}
KScheduler::OnThreadAffinityMaskChanged(kernel, this, old_affinity_mask, old_core);
}
}
return RESULT_SUCCESS;
}
} // namespace Kernel