using ARMeilleure.Decoders; using ARMeilleure.Diagnostics; using ARMeilleure.Instructions; using ARMeilleure.IntermediateRepresentation; using ARMeilleure.Memory; using ARMeilleure.State; using ARMeilleure.Translation.Cache; using ARMeilleure.Translation.PTC; using System; using System.Collections.Concurrent; using System.Collections.Generic; using System.Diagnostics; using System.Linq; using System.Runtime; using System.Threading; using static ARMeilleure.Common.BitMapPool; using static ARMeilleure.IntermediateRepresentation.OperandHelper; using static ARMeilleure.IntermediateRepresentation.OperationHelper; namespace ARMeilleure.Translation { public class Translator { private readonly IJitMemoryAllocator _allocator; private readonly IMemoryManager _memory; private readonly ConcurrentDictionary _funcs; private readonly ConcurrentQueue> _oldFuncs; private readonly ConcurrentStack _backgroundStack; private readonly AutoResetEvent _backgroundTranslatorEvent; private readonly ReaderWriterLock _backgroundTranslatorLock; private JumpTable _jumpTable; internal JumpTable JumpTable => _jumpTable; private volatile int _threadCount; // FIXME: Remove this once the init logic of the emulator will be redone. public static ManualResetEvent IsReadyForTranslation = new ManualResetEvent(false); public Translator(IJitMemoryAllocator allocator, IMemoryManager memory) { _allocator = allocator; _memory = memory; _funcs = new ConcurrentDictionary(); _oldFuncs = new ConcurrentQueue>(); _backgroundStack = new ConcurrentStack(); _backgroundTranslatorEvent = new AutoResetEvent(false); _backgroundTranslatorLock = new ReaderWriterLock(); JitCache.Initialize(allocator); DirectCallStubs.InitializeStubs(); } private void TranslateStackedSubs() { while (_threadCount != 0) { _backgroundTranslatorLock.AcquireReaderLock(Timeout.Infinite); if (_backgroundStack.TryPop(out RejitRequest request)) { TranslatedFunction func = Translate(_memory, _jumpTable, request.Address, request.Mode, highCq: true); _funcs.AddOrUpdate(request.Address, func, (key, oldFunc) => { EnqueueForDeletion(key, oldFunc); return func; }); _jumpTable.RegisterFunction(request.Address, func); if (PtcProfiler.Enabled) { PtcProfiler.UpdateEntry(request.Address, request.Mode, highCq: true); } _backgroundTranslatorLock.ReleaseReaderLock(); } else { _backgroundTranslatorLock.ReleaseReaderLock(); _backgroundTranslatorEvent.WaitOne(); } } _backgroundTranslatorEvent.Set(); // Wake up any other background translator threads, to encourage them to exit. } public void Execute(State.ExecutionContext context, ulong address) { if (Interlocked.Increment(ref _threadCount) == 1) { IsReadyForTranslation.WaitOne(); Debug.Assert(_jumpTable == null); _jumpTable = new JumpTable(_allocator); if (Ptc.State == PtcState.Enabled) { Ptc.LoadTranslations(_funcs, _memory, _jumpTable); Ptc.MakeAndSaveTranslations(_funcs, _memory, _jumpTable); } PtcProfiler.Start(); Ptc.Disable(); // Simple heuristic, should be user configurable in future. (1 for 4 core/ht or less, 2 for 6 core+ht etc). // All threads are normal priority except from the last, which just fills as much of the last core as the os lets it with a low priority. // If we only have one rejit thread, it should be normal priority as highCq code is performance critical. // TODO: Use physical cores rather than logical. This only really makes sense for processors with hyperthreading. Requires OS specific code. int unboundedThreadCount = Math.Max(1, (Environment.ProcessorCount - 6) / 3); int threadCount = Math.Min(4, unboundedThreadCount); for (int i = 0; i < threadCount; i++) { bool last = i != 0 && i == unboundedThreadCount - 1; Thread backgroundTranslatorThread = new Thread(TranslateStackedSubs) { Name = "CPU.BackgroundTranslatorThread." + i, Priority = last ? ThreadPriority.Lowest : ThreadPriority.Normal }; backgroundTranslatorThread.Start(); } } Statistics.InitializeTimer(); NativeInterface.RegisterThread(context, _memory, this); do { address = ExecuteSingle(context, address); } while (context.Running && address != 0); NativeInterface.UnregisterThread(); if (Interlocked.Decrement(ref _threadCount) == 0) { _backgroundTranslatorEvent.Set(); ClearJitCache(); DisposePools(); _jumpTable.Dispose(); _jumpTable = null; GCSettings.LargeObjectHeapCompactionMode = GCLargeObjectHeapCompactionMode.CompactOnce; } } public ulong ExecuteSingle(State.ExecutionContext context, ulong address) { TranslatedFunction func = GetOrTranslate(address, context.ExecutionMode); Statistics.StartTimer(); ulong nextAddr = func.Execute(context); Statistics.StopTimer(address); return nextAddr; } internal TranslatedFunction GetOrTranslate(ulong address, ExecutionMode mode, bool hintRejit = false) { if (!_funcs.TryGetValue(address, out TranslatedFunction func)) { func = Translate(_memory, _jumpTable, address, mode, highCq: false); TranslatedFunction getFunc = _funcs.GetOrAdd(address, func); if (getFunc != func) { JitCache.Unmap(func.FuncPtr); func = getFunc; } if (PtcProfiler.Enabled) { PtcProfiler.AddEntry(address, mode, highCq: false); } } if (hintRejit && func.ShouldRejit()) { _backgroundStack.Push(new RejitRequest(address, mode)); _backgroundTranslatorEvent.Set(); } return func; } internal static TranslatedFunction Translate(IMemoryManager memory, JumpTable jumpTable, ulong address, ExecutionMode mode, bool highCq) { ArmEmitterContext context = new ArmEmitterContext(memory, jumpTable, address, highCq, Aarch32Mode.User); Logger.StartPass(PassName.Decoding); Block[] blocks = Decoder.Decode(memory, address, mode, highCq, singleBlock: false); Logger.EndPass(PassName.Decoding); PreparePool(highCq ? 1 : 0); Logger.StartPass(PassName.Translation); EmitSynchronization(context); if (blocks[0].Address != address) { context.Branch(context.GetLabel(address)); } ControlFlowGraph cfg = EmitAndGetCFG(context, blocks, out Range funcRange); ulong funcSize = funcRange.End - funcRange.Start; Logger.EndPass(PassName.Translation); Logger.StartPass(PassName.RegisterUsage); RegisterUsage.RunPass(cfg, mode); Logger.EndPass(PassName.RegisterUsage); OperandType[] argTypes = new OperandType[] { OperandType.I64 }; CompilerOptions options = highCq ? CompilerOptions.HighCq : CompilerOptions.None; GuestFunction func; if (Ptc.State == PtcState.Disabled) { func = Compiler.Compile(cfg, argTypes, OperandType.I64, options); ResetPool(highCq ? 1 : 0); } else { using PtcInfo ptcInfo = new PtcInfo(); func = Compiler.Compile(cfg, argTypes, OperandType.I64, options, ptcInfo); ResetPool(highCq ? 1 : 0); Ptc.WriteInfoCodeRelocUnwindInfo(address, funcSize, highCq, ptcInfo); } return new TranslatedFunction(func, funcSize, highCq); } internal static void PreparePool(int groupId = 0) { PrepareOperandPool(groupId); PrepareOperationPool(groupId); } internal static void ResetPool(int groupId = 0) { ResetOperationPool(groupId); ResetOperandPool(groupId); } internal static void DisposePools() { DisposeOperandPools(); DisposeOperationPools(); DisposeBitMapPools(); } private struct Range { public ulong Start { get; } public ulong End { get; } public Range(ulong start, ulong end) { Start = start; End = end; } } private static ControlFlowGraph EmitAndGetCFG(ArmEmitterContext context, Block[] blocks, out Range range) { ulong rangeStart = ulong.MaxValue; ulong rangeEnd = 0; for (int blkIndex = 0; blkIndex < blocks.Length; blkIndex++) { Block block = blocks[blkIndex]; if (!block.Exit) { if (rangeStart > block.Address) { rangeStart = block.Address; } if (rangeEnd < block.EndAddress) { rangeEnd = block.EndAddress; } } context.CurrBlock = block; context.MarkLabel(context.GetLabel(block.Address)); if (block.Exit) { InstEmitFlowHelper.EmitTailContinue(context, Const(block.Address), block.TailCall); } else { for (int opcIndex = 0; opcIndex < block.OpCodes.Count; opcIndex++) { OpCode opCode = block.OpCodes[opcIndex]; context.CurrOp = opCode; bool isLastOp = opcIndex == block.OpCodes.Count - 1; if (isLastOp && block.Branch != null && !block.Branch.Exit && block.Branch.Address <= block.Address) { EmitSynchronization(context); } Operand lblPredicateSkip = null; if (opCode is OpCode32 op && op.Cond < Condition.Al) { lblPredicateSkip = Label(); InstEmitFlowHelper.EmitCondBranch(context, lblPredicateSkip, op.Cond.Invert()); } if (opCode.Instruction.Emitter != null) { opCode.Instruction.Emitter(context); } else { throw new InvalidOperationException($"Invalid instruction \"{opCode.Instruction.Name}\"."); } if (lblPredicateSkip != null) { context.MarkLabel(lblPredicateSkip); } } } } range = new Range(rangeStart, rangeEnd); return context.GetControlFlowGraph(); } internal static void EmitSynchronization(EmitterContext context) { long countOffs = NativeContext.GetCounterOffset(); Operand countAddr = context.Add(context.LoadArgument(OperandType.I64, 0), Const(countOffs)); Operand count = context.Load(OperandType.I32, countAddr); Operand lblNonZero = Label(); Operand lblExit = Label(); context.BranchIfTrue(lblNonZero, count, BasicBlockFrequency.Cold); Operand running = context.Call(typeof(NativeInterface).GetMethod(nameof(NativeInterface.CheckSynchronization))); context.BranchIfTrue(lblExit, running, BasicBlockFrequency.Cold); context.Return(Const(0L)); context.MarkLabel(lblNonZero); count = context.Subtract(count, Const(1)); context.Store(countAddr, count); context.MarkLabel(lblExit); } public void InvalidateJitCacheRegion(ulong address, ulong size) { static bool OverlapsWith(ulong funcAddress, ulong funcSize, ulong address, ulong size) { return funcAddress < address + size && address < funcAddress + funcSize; } // Make a copy of all overlapping functions, as we can't otherwise // remove elements from the collection we are iterating. // Doing that before clearing the rejit queue is fine, even // if a function is translated after this, it would only replace // a existing function, as rejit is only triggered on functions // that were already executed before. var toDelete = _funcs.Where(x => OverlapsWith(x.Key, x.Value.GuestSize, address, size)).ToArray(); if (toDelete.Length != 0) { // If rejit is running, stop it as it may be trying to rejit the functions we are // supposed to remove. ClearRejitQueue(); } foreach (var kv in toDelete) { if (_funcs.TryRemove(kv.Key, out TranslatedFunction func)) { EnqueueForDeletion(kv.Key, func); } } } private void EnqueueForDeletion(ulong guestAddress, TranslatedFunction func) { _oldFuncs.Enqueue(new KeyValuePair(guestAddress, func.FuncPtr)); } private void ClearJitCache() { // Ensure no attempt will be made to compile new functions due to rejit. ClearRejitQueue(); foreach (var kv in _funcs) { JitCache.Unmap(kv.Value.FuncPtr); } _funcs.Clear(); while (_oldFuncs.TryDequeue(out var kv)) { JitCache.Unmap(kv.Value); } } private void ClearRejitQueue() { _backgroundTranslatorLock.AcquireWriterLock(Timeout.Infinite); _backgroundStack.Clear(); _backgroundTranslatorLock.ReleaseWriterLock(); } } }