mirror of
http://git.haproxy.org/git/haproxy.git
synced 2026-02-10 15:32:49 +02:00
The current synchronization point enforces certain restrictions which are hard to workaround in certain areas of the code. The fact that the critical code can only be called from the sync point itself is a problem for some callback-driven parts. The "show fd" command for example is fragile regarding this. Also it is expensive in terms of CPU usage because it wakes every other thread just to be sure all of them join to the rendez-vous point. It's a problem because the sleeping threads would not need to be woken up just to know they're doing nothing. Here we implement a different approach. We keep track of harmless threads, which are defined as those either doing nothing, or doing harmless things. The rendez-vous is used "for others" as a way for a thread to isolate itself. A thread then requests to be alone using thread_isolate() when approaching the dangerous area, and then waits until all other threads are either doing the same or are doing something harmless (typically polling). The function only returns once the thread is guaranteed to be alone, and the critical section is terminated using thread_release().
356 lines
8.0 KiB
C
356 lines
8.0 KiB
C
/*
|
|
* FD polling functions for FreeBSD kqueue()
|
|
*
|
|
* Copyright 2000-2014 Willy Tarreau <w@1wt.eu>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
*/
|
|
|
|
#include <unistd.h>
|
|
#include <sys/time.h>
|
|
#include <sys/types.h>
|
|
|
|
#include <sys/event.h>
|
|
#include <sys/time.h>
|
|
|
|
#include <common/compat.h>
|
|
#include <common/config.h>
|
|
#include <common/hathreads.h>
|
|
#include <common/ticks.h>
|
|
#include <common/time.h>
|
|
#include <common/tools.h>
|
|
|
|
#include <types/global.h>
|
|
|
|
#include <proto/fd.h>
|
|
|
|
|
|
/* private data */
|
|
static int kqueue_fd[MAX_THREADS]; // per-thread kqueue_fd
|
|
static THREAD_LOCAL struct kevent *kev = NULL;
|
|
static struct kevent *kev_out = NULL; // Trash buffer for kevent() to write the eventlist in
|
|
|
|
static int _update_fd(int fd, int start)
|
|
{
|
|
int en;
|
|
int changes = start;
|
|
|
|
en = fdtab[fd].state;
|
|
|
|
if (!(fdtab[fd].thread_mask & tid_bit) || !(en & FD_EV_POLLED_RW)) {
|
|
if (!(polled_mask[fd] & tid_bit)) {
|
|
/* fd was not watched, it's still not */
|
|
return 0;
|
|
}
|
|
/* fd totally removed from poll list */
|
|
EV_SET(&kev[changes++], fd, EVFILT_READ, EV_DELETE, 0, 0, NULL);
|
|
EV_SET(&kev[changes++], fd, EVFILT_WRITE, EV_DELETE, 0, 0, NULL);
|
|
HA_ATOMIC_AND(&polled_mask[fd], ~tid_bit);
|
|
}
|
|
else {
|
|
/* OK fd has to be monitored, it was either added or changed */
|
|
|
|
if (en & FD_EV_POLLED_R)
|
|
EV_SET(&kev[changes++], fd, EVFILT_READ, EV_ADD, 0, 0, NULL);
|
|
else if (polled_mask[fd] & tid_bit)
|
|
EV_SET(&kev[changes++], fd, EVFILT_READ, EV_DELETE, 0, 0, NULL);
|
|
|
|
if (en & FD_EV_POLLED_W)
|
|
EV_SET(&kev[changes++], fd, EVFILT_WRITE, EV_ADD, 0, 0, NULL);
|
|
else if (polled_mask[fd] & tid_bit)
|
|
EV_SET(&kev[changes++], fd, EVFILT_WRITE, EV_DELETE, 0, 0, NULL);
|
|
|
|
HA_ATOMIC_OR(&polled_mask[fd], tid_bit);
|
|
}
|
|
return changes;
|
|
}
|
|
|
|
/*
|
|
* kqueue() poller
|
|
*/
|
|
REGPRM2 static void _do_poll(struct poller *p, int exp)
|
|
{
|
|
int status;
|
|
int count, fd, delta_ms;
|
|
struct timespec timeout;
|
|
int updt_idx;
|
|
int changes = 0;
|
|
int old_fd;
|
|
|
|
timeout.tv_sec = 0;
|
|
timeout.tv_nsec = 0;
|
|
/* first, scan the update list to find changes */
|
|
for (updt_idx = 0; updt_idx < fd_nbupdt; updt_idx++) {
|
|
fd = fd_updt[updt_idx];
|
|
|
|
HA_ATOMIC_AND(&fdtab[fd].update_mask, ~tid_bit);
|
|
if (!fdtab[fd].owner) {
|
|
activity[tid].poll_drop++;
|
|
continue;
|
|
}
|
|
changes = _update_fd(fd, changes);
|
|
}
|
|
/* Scan the global update list */
|
|
for (old_fd = fd = update_list.first; fd != -1; fd = fdtab[fd].update.next) {
|
|
if (fd == -2) {
|
|
fd = old_fd;
|
|
continue;
|
|
}
|
|
else if (fd <= -3)
|
|
fd = -fd -4;
|
|
if (fd == -1)
|
|
break;
|
|
if (fdtab[fd].update_mask & tid_bit)
|
|
done_update_polling(fd);
|
|
else
|
|
continue;
|
|
if (!fdtab[fd].owner)
|
|
continue;
|
|
changes = _update_fd(fd, changes);
|
|
}
|
|
|
|
thread_harmless_now();
|
|
|
|
if (changes) {
|
|
#ifdef EV_RECEIPT
|
|
kev[0].flags |= EV_RECEIPT;
|
|
#else
|
|
/* If EV_RECEIPT isn't defined, just add an invalid entry,
|
|
* so that we get an error and kevent() stops before scanning
|
|
* the kqueue.
|
|
*/
|
|
EV_SET(&kev[changes++], -1, EVFILT_WRITE, EV_DELETE, 0, 0, NULL);
|
|
#endif
|
|
kevent(kqueue_fd[tid], kev, changes, kev_out, changes, &timeout);
|
|
}
|
|
fd_nbupdt = 0;
|
|
|
|
delta_ms = 0;
|
|
|
|
if (!exp) {
|
|
delta_ms = MAX_DELAY_MS;
|
|
timeout.tv_sec = (MAX_DELAY_MS / 1000);
|
|
timeout.tv_nsec = (MAX_DELAY_MS % 1000) * 1000000;
|
|
}
|
|
else if (!tick_is_expired(exp, now_ms)) {
|
|
delta_ms = TICKS_TO_MS(tick_remain(now_ms, exp)) + 1;
|
|
if (delta_ms > MAX_DELAY_MS)
|
|
delta_ms = MAX_DELAY_MS;
|
|
timeout.tv_sec = (delta_ms / 1000);
|
|
timeout.tv_nsec = (delta_ms % 1000) * 1000000;
|
|
}
|
|
else
|
|
activity[tid].poll_exp++;
|
|
|
|
fd = global.tune.maxpollevents;
|
|
gettimeofday(&before_poll, NULL);
|
|
status = kevent(kqueue_fd[tid], // int kq
|
|
NULL, // const struct kevent *changelist
|
|
0, // int nchanges
|
|
kev, // struct kevent *eventlist
|
|
fd, // int nevents
|
|
&timeout); // const struct timespec *timeout
|
|
tv_update_date(delta_ms, status);
|
|
measure_idle();
|
|
|
|
thread_harmless_end();
|
|
|
|
for (count = 0; count < status; count++) {
|
|
unsigned int n = 0;
|
|
fd = kev[count].ident;
|
|
|
|
if (!fdtab[fd].owner) {
|
|
activity[tid].poll_dead++;
|
|
continue;
|
|
}
|
|
|
|
if (!(fdtab[fd].thread_mask & tid_bit)) {
|
|
activity[tid].poll_skip++;
|
|
continue;
|
|
}
|
|
|
|
if (kev[count].filter == EVFILT_READ) {
|
|
if (kev[count].data)
|
|
n |= FD_POLL_IN;
|
|
if (kev[count].flags & EV_EOF)
|
|
n |= FD_POLL_HUP;
|
|
}
|
|
else if (kev[count].filter == EVFILT_WRITE) {
|
|
n |= FD_POLL_OUT;
|
|
if (kev[count].flags & EV_EOF)
|
|
n |= FD_POLL_ERR;
|
|
}
|
|
|
|
fd_update_events(fd, n);
|
|
}
|
|
}
|
|
|
|
|
|
static int init_kqueue_per_thread()
|
|
{
|
|
int fd;
|
|
|
|
/* we can have up to two events per fd, so allocate enough to store
|
|
* 2*fd event, and an extra one, in case EV_RECEIPT isn't defined,
|
|
* so that we can add an invalid entry and get an error, to avoid
|
|
* scanning the kqueue uselessly.
|
|
*/
|
|
kev = calloc(1, sizeof(struct kevent) * (2 * global.maxsock + 1));
|
|
if (kev == NULL)
|
|
goto fail_alloc;
|
|
|
|
if (MAX_THREADS > 1 && tid) {
|
|
kqueue_fd[tid] = kqueue();
|
|
if (kqueue_fd[tid] < 0)
|
|
goto fail_fd;
|
|
}
|
|
|
|
/* we may have to unregister some events initially registered on the
|
|
* original fd when it was alone, and/or to register events on the new
|
|
* fd for this thread. Let's just mark them as updated, the poller will
|
|
* do the rest.
|
|
*/
|
|
for (fd = 0; fd < global.maxsock; fd++)
|
|
updt_fd_polling(fd);
|
|
|
|
return 1;
|
|
fail_fd:
|
|
free(kev);
|
|
fail_alloc:
|
|
return 0;
|
|
}
|
|
|
|
static void deinit_kqueue_per_thread()
|
|
{
|
|
if (MAX_THREADS > 1 && tid)
|
|
close(kqueue_fd[tid]);
|
|
|
|
free(kev);
|
|
kev = NULL;
|
|
}
|
|
|
|
/*
|
|
* Initialization of the kqueue() poller.
|
|
* Returns 0 in case of failure, non-zero in case of success. If it fails, it
|
|
* disables the poller by setting its pref to 0.
|
|
*/
|
|
REGPRM1 static int _do_init(struct poller *p)
|
|
{
|
|
p->private = NULL;
|
|
|
|
/* we can have up to two events per fd, so allocate enough to store
|
|
* 2*fd event, and an extra one, in case EV_RECEIPT isn't defined,
|
|
* so that we can add an invalid entry and get an error, to avoid
|
|
* scanning the kqueue uselessly.
|
|
*/
|
|
kev_out = calloc(1, sizeof(struct kevent) * (2 * global.maxsock + 1));
|
|
if (!kev_out)
|
|
goto fail_alloc;
|
|
|
|
kqueue_fd[tid] = kqueue();
|
|
if (kqueue_fd[tid] < 0)
|
|
goto fail_fd;
|
|
|
|
hap_register_per_thread_init(init_kqueue_per_thread);
|
|
hap_register_per_thread_deinit(deinit_kqueue_per_thread);
|
|
return 1;
|
|
|
|
fail_fd:
|
|
free(kev_out);
|
|
kev_out = NULL;
|
|
fail_alloc:
|
|
p->pref = 0;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Termination of the kqueue() poller.
|
|
* Memory is released and the poller is marked as unselectable.
|
|
*/
|
|
REGPRM1 static void _do_term(struct poller *p)
|
|
{
|
|
if (kqueue_fd[tid] >= 0) {
|
|
close(kqueue_fd[tid]);
|
|
kqueue_fd[tid] = -1;
|
|
}
|
|
|
|
p->private = NULL;
|
|
p->pref = 0;
|
|
if (kev_out) {
|
|
free(kev_out);
|
|
kev_out = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check that the poller works.
|
|
* Returns 1 if OK, otherwise 0.
|
|
*/
|
|
REGPRM1 static int _do_test(struct poller *p)
|
|
{
|
|
int fd;
|
|
|
|
fd = kqueue();
|
|
if (fd < 0)
|
|
return 0;
|
|
close(fd);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Recreate the kqueue file descriptor after a fork(). Returns 1 if OK,
|
|
* otherwise 0. Note that some pollers need to be reopened after a fork()
|
|
* (such as kqueue), and some others may fail to do so in a chroot.
|
|
*/
|
|
REGPRM1 static int _do_fork(struct poller *p)
|
|
{
|
|
kqueue_fd[tid] = kqueue();
|
|
if (kqueue_fd[tid] < 0)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* It is a constructor, which means that it will automatically be called before
|
|
* main(). This is GCC-specific but it works at least since 2.95.
|
|
* Special care must be taken so that it does not need any uninitialized data.
|
|
*/
|
|
__attribute__((constructor))
|
|
static void _do_register(void)
|
|
{
|
|
struct poller *p;
|
|
int i;
|
|
|
|
if (nbpollers >= MAX_POLLERS)
|
|
return;
|
|
|
|
for (i = 0; i < MAX_THREADS; i++)
|
|
kqueue_fd[i] = -1;
|
|
|
|
p = &pollers[nbpollers++];
|
|
|
|
p->name = "kqueue";
|
|
p->pref = 300;
|
|
p->flags = HAP_POLL_F_RDHUP;
|
|
p->private = NULL;
|
|
|
|
p->clo = NULL;
|
|
p->test = _do_test;
|
|
p->init = _do_init;
|
|
p->term = _do_term;
|
|
p->poll = _do_poll;
|
|
p->fork = _do_fork;
|
|
}
|
|
|
|
|
|
/*
|
|
* Local variables:
|
|
* c-indent-level: 8
|
|
* c-basic-offset: 8
|
|
* End:
|
|
*/
|