mirror of
http://git.haproxy.org/git/haproxy.git
synced 2026-02-10 01:23:09 +02:00
It's quite common to write directives like the following :
tcp-request reject if WAIT_END { sc0_inc_gpc0 }
This one will never reject, because sc0_inc_gpc0 is provided no value
to compare against. The proper form should have been something like this :
tcp-request reject if WAIT_END { sc0_inc_gpc0 gt 0 }
or :
tcp-request reject if WAIT_END { sc0_inc_gpc0 -m found }
Now we detect the absence of any argument on the command line and emit
a warning suggesting alternatives or the use of "--" to really avoid
matching anything (might be used when debugging).
1962 lines
55 KiB
C
1962 lines
55 KiB
C
/*
|
|
* ACL management functions.
|
|
*
|
|
* Copyright 2000-2013 Willy Tarreau <w@1wt.eu>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
*/
|
|
|
|
#include <ctype.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
#include <common/config.h>
|
|
#include <common/mini-clist.h>
|
|
#include <common/standard.h>
|
|
#include <common/uri_auth.h>
|
|
|
|
#include <types/global.h>
|
|
|
|
#include <proto/acl.h>
|
|
#include <proto/arg.h>
|
|
#include <proto/auth.h>
|
|
#include <proto/channel.h>
|
|
#include <proto/log.h>
|
|
#include <proto/proxy.h>
|
|
#include <proto/sample.h>
|
|
#include <proto/stick_table.h>
|
|
|
|
#include <ebsttree.h>
|
|
|
|
/* List head of all known ACL keywords */
|
|
static struct acl_kw_list acl_keywords = {
|
|
.list = LIST_HEAD_INIT(acl_keywords.list)
|
|
};
|
|
|
|
static char *acl_match_names[ACL_MATCH_NUM] = {
|
|
[ACL_MATCH_FOUND] = "found",
|
|
[ACL_MATCH_BOOL] = "bool",
|
|
[ACL_MATCH_INT] = "int",
|
|
[ACL_MATCH_IP] = "ip",
|
|
[ACL_MATCH_BIN] = "bin",
|
|
[ACL_MATCH_LEN] = "len",
|
|
[ACL_MATCH_STR] = "str",
|
|
[ACL_MATCH_BEG] = "beg",
|
|
[ACL_MATCH_SUB] = "sub",
|
|
[ACL_MATCH_DIR] = "dir",
|
|
[ACL_MATCH_DOM] = "dom",
|
|
[ACL_MATCH_END] = "end",
|
|
[ACL_MATCH_REG] = "reg",
|
|
};
|
|
|
|
static int (*acl_parse_fcts[ACL_MATCH_NUM])(const char **, struct acl_pattern *, int *, char **) = {
|
|
[ACL_MATCH_FOUND] = acl_parse_nothing,
|
|
[ACL_MATCH_BOOL] = acl_parse_nothing,
|
|
[ACL_MATCH_INT] = acl_parse_int,
|
|
[ACL_MATCH_IP] = acl_parse_ip,
|
|
[ACL_MATCH_BIN] = acl_parse_bin,
|
|
[ACL_MATCH_LEN] = acl_parse_int,
|
|
[ACL_MATCH_STR] = acl_parse_str,
|
|
[ACL_MATCH_BEG] = acl_parse_str,
|
|
[ACL_MATCH_SUB] = acl_parse_str,
|
|
[ACL_MATCH_DIR] = acl_parse_str,
|
|
[ACL_MATCH_DOM] = acl_parse_str,
|
|
[ACL_MATCH_END] = acl_parse_str,
|
|
[ACL_MATCH_REG] = acl_parse_reg,
|
|
};
|
|
|
|
static int (*acl_match_fcts[ACL_MATCH_NUM])(struct sample *, struct acl_pattern *) = {
|
|
[ACL_MATCH_FOUND] = NULL,
|
|
[ACL_MATCH_BOOL] = acl_match_nothing,
|
|
[ACL_MATCH_INT] = acl_match_int,
|
|
[ACL_MATCH_IP] = acl_match_ip,
|
|
[ACL_MATCH_BIN] = acl_match_bin,
|
|
[ACL_MATCH_LEN] = acl_match_len,
|
|
[ACL_MATCH_STR] = acl_match_str,
|
|
[ACL_MATCH_BEG] = acl_match_beg,
|
|
[ACL_MATCH_SUB] = acl_match_sub,
|
|
[ACL_MATCH_DIR] = acl_match_dir,
|
|
[ACL_MATCH_DOM] = acl_match_dom,
|
|
[ACL_MATCH_END] = acl_match_end,
|
|
[ACL_MATCH_REG] = acl_match_reg,
|
|
};
|
|
|
|
/* return the ACL_MATCH_* index for match name "name", or < 0 if not found */
|
|
static int acl_find_match_name(const char *name)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ACL_MATCH_NUM; i++)
|
|
if (strcmp(name, acl_match_names[i]) == 0)
|
|
return i;
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* These functions are exported and may be used by any other component.
|
|
*/
|
|
|
|
/* ignore the current line */
|
|
int acl_parse_nothing(const char **text, struct acl_pattern *pattern, int *opaque, char **err)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
/* always return false */
|
|
int acl_match_nothing(struct sample *smp, struct acl_pattern *pattern)
|
|
{
|
|
return ACL_PAT_FAIL;
|
|
}
|
|
|
|
|
|
/* NB: For two strings to be identical, it is required that their lengths match */
|
|
int acl_match_str(struct sample *smp, struct acl_pattern *pattern)
|
|
{
|
|
int icase;
|
|
|
|
if (pattern->len != smp->data.str.len)
|
|
return ACL_PAT_FAIL;
|
|
|
|
icase = pattern->flags & ACL_PAT_F_IGNORE_CASE;
|
|
if ((icase && strncasecmp(pattern->ptr.str, smp->data.str.str, smp->data.str.len) == 0) ||
|
|
(!icase && strncmp(pattern->ptr.str, smp->data.str.str, smp->data.str.len) == 0))
|
|
return ACL_PAT_PASS;
|
|
return ACL_PAT_FAIL;
|
|
}
|
|
|
|
/* NB: For two binaries buf to be identical, it is required that their lengths match */
|
|
int acl_match_bin(struct sample *smp, struct acl_pattern *pattern)
|
|
{
|
|
if (pattern->len != smp->data.str.len)
|
|
return ACL_PAT_FAIL;
|
|
|
|
if (memcmp(pattern->ptr.str, smp->data.str.str, smp->data.str.len) == 0)
|
|
return ACL_PAT_PASS;
|
|
return ACL_PAT_FAIL;
|
|
}
|
|
|
|
/* Lookup a string in the expression's pattern tree. The node is returned if it
|
|
* exists, otherwise NULL.
|
|
*/
|
|
static void *acl_lookup_str(struct sample *smp, struct acl_expr *expr)
|
|
{
|
|
/* data are stored in a tree */
|
|
struct ebmb_node *node;
|
|
char prev;
|
|
|
|
/* we may have to force a trailing zero on the test pattern */
|
|
prev = smp->data.str.str[smp->data.str.len];
|
|
if (prev)
|
|
smp->data.str.str[smp->data.str.len] = '\0';
|
|
node = ebst_lookup(&expr->pattern_tree, smp->data.str.str);
|
|
if (prev)
|
|
smp->data.str.str[smp->data.str.len] = prev;
|
|
return node;
|
|
}
|
|
|
|
/* Executes a regex. It temporarily changes the data to add a trailing zero,
|
|
* and restores the previous character when leaving.
|
|
*/
|
|
int acl_match_reg(struct sample *smp, struct acl_pattern *pattern)
|
|
{
|
|
if (regex_exec(pattern->ptr.reg, smp->data.str.str, smp->data.str.len) == 0)
|
|
return ACL_PAT_PASS;
|
|
return ACL_PAT_FAIL;
|
|
}
|
|
|
|
/* Checks that the pattern matches the beginning of the tested string. */
|
|
int acl_match_beg(struct sample *smp, struct acl_pattern *pattern)
|
|
{
|
|
int icase;
|
|
|
|
if (pattern->len > smp->data.str.len)
|
|
return ACL_PAT_FAIL;
|
|
|
|
icase = pattern->flags & ACL_PAT_F_IGNORE_CASE;
|
|
if ((icase && strncasecmp(pattern->ptr.str, smp->data.str.str, pattern->len) != 0) ||
|
|
(!icase && strncmp(pattern->ptr.str, smp->data.str.str, pattern->len) != 0))
|
|
return ACL_PAT_FAIL;
|
|
return ACL_PAT_PASS;
|
|
}
|
|
|
|
/* Checks that the pattern matches the end of the tested string. */
|
|
int acl_match_end(struct sample *smp, struct acl_pattern *pattern)
|
|
{
|
|
int icase;
|
|
|
|
if (pattern->len > smp->data.str.len)
|
|
return ACL_PAT_FAIL;
|
|
icase = pattern->flags & ACL_PAT_F_IGNORE_CASE;
|
|
if ((icase && strncasecmp(pattern->ptr.str, smp->data.str.str + smp->data.str.len - pattern->len, pattern->len) != 0) ||
|
|
(!icase && strncmp(pattern->ptr.str, smp->data.str.str + smp->data.str.len - pattern->len, pattern->len) != 0))
|
|
return ACL_PAT_FAIL;
|
|
return ACL_PAT_PASS;
|
|
}
|
|
|
|
/* Checks that the pattern is included inside the tested string.
|
|
* NB: Suboptimal, should be rewritten using a Boyer-Moore method.
|
|
*/
|
|
int acl_match_sub(struct sample *smp, struct acl_pattern *pattern)
|
|
{
|
|
int icase;
|
|
char *end;
|
|
char *c;
|
|
|
|
if (pattern->len > smp->data.str.len)
|
|
return ACL_PAT_FAIL;
|
|
|
|
end = smp->data.str.str + smp->data.str.len - pattern->len;
|
|
icase = pattern->flags & ACL_PAT_F_IGNORE_CASE;
|
|
if (icase) {
|
|
for (c = smp->data.str.str; c <= end; c++) {
|
|
if (tolower(*c) != tolower(*pattern->ptr.str))
|
|
continue;
|
|
if (strncasecmp(pattern->ptr.str, c, pattern->len) == 0)
|
|
return ACL_PAT_PASS;
|
|
}
|
|
} else {
|
|
for (c = smp->data.str.str; c <= end; c++) {
|
|
if (*c != *pattern->ptr.str)
|
|
continue;
|
|
if (strncmp(pattern->ptr.str, c, pattern->len) == 0)
|
|
return ACL_PAT_PASS;
|
|
}
|
|
}
|
|
return ACL_PAT_FAIL;
|
|
}
|
|
|
|
/* Background: Fast way to find a zero byte in a word
|
|
* http://graphics.stanford.edu/~seander/bithacks.html#ZeroInWord
|
|
* hasZeroByte = (v - 0x01010101UL) & ~v & 0x80808080UL;
|
|
*
|
|
* To look for 4 different byte values, xor the word with those bytes and
|
|
* then check for zero bytes:
|
|
*
|
|
* v = (((unsigned char)c * 0x1010101U) ^ delimiter)
|
|
* where <delimiter> is the 4 byte values to look for (as an uint)
|
|
* and <c> is the character that is being tested
|
|
*/
|
|
static inline unsigned int is_delimiter(unsigned char c, unsigned int mask)
|
|
{
|
|
mask ^= (c * 0x01010101); /* propagate the char to all 4 bytes */
|
|
return (mask - 0x01010101) & ~mask & 0x80808080U;
|
|
}
|
|
|
|
static inline unsigned int make_4delim(unsigned char d1, unsigned char d2, unsigned char d3, unsigned char d4)
|
|
{
|
|
return d1 << 24 | d2 << 16 | d3 << 8 | d4;
|
|
}
|
|
|
|
/* This one is used by other real functions. It checks that the pattern is
|
|
* included inside the tested string, but enclosed between the specified
|
|
* delimiters or at the beginning or end of the string. The delimiters are
|
|
* provided as an unsigned int made by make_4delim() and match up to 4 different
|
|
* delimiters. Delimiters are stripped at the beginning and end of the pattern.
|
|
*/
|
|
static int match_word(struct sample *smp, struct acl_pattern *pattern, unsigned int delimiters)
|
|
{
|
|
int may_match, icase;
|
|
char *c, *end;
|
|
char *ps;
|
|
int pl;
|
|
|
|
pl = pattern->len;
|
|
ps = pattern->ptr.str;
|
|
|
|
while (pl > 0 && is_delimiter(*ps, delimiters)) {
|
|
pl--;
|
|
ps++;
|
|
}
|
|
|
|
while (pl > 0 && is_delimiter(ps[pl - 1], delimiters))
|
|
pl--;
|
|
|
|
if (pl > smp->data.str.len)
|
|
return ACL_PAT_FAIL;
|
|
|
|
may_match = 1;
|
|
icase = pattern->flags & ACL_PAT_F_IGNORE_CASE;
|
|
end = smp->data.str.str + smp->data.str.len - pl;
|
|
for (c = smp->data.str.str; c <= end; c++) {
|
|
if (is_delimiter(*c, delimiters)) {
|
|
may_match = 1;
|
|
continue;
|
|
}
|
|
|
|
if (!may_match)
|
|
continue;
|
|
|
|
if (icase) {
|
|
if ((tolower(*c) == tolower(*ps)) &&
|
|
(strncasecmp(ps, c, pl) == 0) &&
|
|
(c == end || is_delimiter(c[pl], delimiters)))
|
|
return ACL_PAT_PASS;
|
|
} else {
|
|
if ((*c == *ps) &&
|
|
(strncmp(ps, c, pl) == 0) &&
|
|
(c == end || is_delimiter(c[pl], delimiters)))
|
|
return ACL_PAT_PASS;
|
|
}
|
|
may_match = 0;
|
|
}
|
|
return ACL_PAT_FAIL;
|
|
}
|
|
|
|
/* Checks that the pattern is included inside the tested string, but enclosed
|
|
* between the delimiters '?' or '/' or at the beginning or end of the string.
|
|
* Delimiters at the beginning or end of the pattern are ignored.
|
|
*/
|
|
int acl_match_dir(struct sample *smp, struct acl_pattern *pattern)
|
|
{
|
|
return match_word(smp, pattern, make_4delim('/', '?', '?', '?'));
|
|
}
|
|
|
|
/* Checks that the pattern is included inside the tested string, but enclosed
|
|
* between the delmiters '/', '?', '.' or ":" or at the beginning or end of
|
|
* the string. Delimiters at the beginning or end of the pattern are ignored.
|
|
*/
|
|
int acl_match_dom(struct sample *smp, struct acl_pattern *pattern)
|
|
{
|
|
return match_word(smp, pattern, make_4delim('/', '?', '.', ':'));
|
|
}
|
|
|
|
/* Checks that the integer in <test> is included between min and max */
|
|
int acl_match_int(struct sample *smp, struct acl_pattern *pattern)
|
|
{
|
|
if ((!pattern->val.range.min_set || pattern->val.range.min <= smp->data.uint) &&
|
|
(!pattern->val.range.max_set || smp->data.uint <= pattern->val.range.max))
|
|
return ACL_PAT_PASS;
|
|
return ACL_PAT_FAIL;
|
|
}
|
|
|
|
/* Checks that the length of the pattern in <test> is included between min and max */
|
|
int acl_match_len(struct sample *smp, struct acl_pattern *pattern)
|
|
{
|
|
if ((!pattern->val.range.min_set || pattern->val.range.min <= smp->data.str.len) &&
|
|
(!pattern->val.range.max_set || smp->data.str.len <= pattern->val.range.max))
|
|
return ACL_PAT_PASS;
|
|
return ACL_PAT_FAIL;
|
|
}
|
|
|
|
int acl_match_ip(struct sample *smp, struct acl_pattern *pattern)
|
|
{
|
|
unsigned int v4; /* in network byte order */
|
|
struct in6_addr *v6;
|
|
int bits, pos;
|
|
struct in6_addr tmp6;
|
|
|
|
if (pattern->type == SMP_T_IPV4) {
|
|
if (smp->type == SMP_T_IPV4) {
|
|
v4 = smp->data.ipv4.s_addr;
|
|
}
|
|
else if (smp->type == SMP_T_IPV6) {
|
|
/* v4 match on a V6 sample. We want to check at least for
|
|
* the following forms :
|
|
* - ::ffff:ip:v4 (ipv4 mapped)
|
|
* - ::0000:ip:v4 (old ipv4 mapped)
|
|
* - 2002:ip:v4:: (6to4)
|
|
*/
|
|
if (*(uint32_t*)&smp->data.ipv6.s6_addr[0] == 0 &&
|
|
*(uint32_t*)&smp->data.ipv6.s6_addr[4] == 0 &&
|
|
(*(uint32_t*)&smp->data.ipv6.s6_addr[8] == 0 ||
|
|
*(uint32_t*)&smp->data.ipv6.s6_addr[8] == htonl(0xFFFF))) {
|
|
v4 = *(uint32_t*)&smp->data.ipv6.s6_addr[12];
|
|
}
|
|
else if (*(uint16_t*)&smp->data.ipv6.s6_addr[0] == htons(0x2002)) {
|
|
v4 = htonl((ntohs(*(uint16_t*)&smp->data.ipv6.s6_addr[2]) << 16) +
|
|
ntohs(*(uint16_t*)&smp->data.ipv6.s6_addr[4]));
|
|
}
|
|
else
|
|
return ACL_PAT_FAIL;
|
|
}
|
|
else
|
|
return ACL_PAT_FAIL;
|
|
|
|
if (((v4 ^ pattern->val.ipv4.addr.s_addr) & pattern->val.ipv4.mask.s_addr) == 0)
|
|
return ACL_PAT_PASS;
|
|
else
|
|
return ACL_PAT_FAIL;
|
|
}
|
|
else if (pattern->type == SMP_T_IPV6) {
|
|
if (smp->type == SMP_T_IPV4) {
|
|
/* Convert the IPv4 sample address to IPv4 with the
|
|
* mapping method using the ::ffff: prefix.
|
|
*/
|
|
memset(&tmp6, 0, 10);
|
|
*(uint16_t*)&tmp6.s6_addr[10] = htons(0xffff);
|
|
*(uint32_t*)&tmp6.s6_addr[12] = smp->data.ipv4.s_addr;
|
|
v6 = &tmp6;
|
|
}
|
|
else if (smp->type == SMP_T_IPV6) {
|
|
v6 = &smp->data.ipv6;
|
|
}
|
|
else {
|
|
return ACL_PAT_FAIL;
|
|
}
|
|
|
|
bits = pattern->val.ipv6.mask;
|
|
for (pos = 0; bits > 0; pos += 4, bits -= 32) {
|
|
v4 = *(uint32_t*)&v6->s6_addr[pos] ^ *(uint32_t*)&pattern->val.ipv6.addr.s6_addr[pos];
|
|
if (bits < 32)
|
|
v4 &= htonl((~0U) << (32-bits));
|
|
if (v4)
|
|
return ACL_PAT_FAIL;
|
|
}
|
|
return ACL_PAT_PASS;
|
|
}
|
|
return ACL_PAT_FAIL;
|
|
}
|
|
|
|
/* Lookup an IPv4 address in the expression's pattern tree using the longest
|
|
* match method. The node is returned if it exists, otherwise NULL.
|
|
*/
|
|
static void *acl_lookup_ip(struct sample *smp, struct acl_expr *expr)
|
|
{
|
|
struct in_addr *s;
|
|
|
|
if (smp->type != SMP_T_IPV4)
|
|
return ACL_PAT_FAIL;
|
|
|
|
s = &smp->data.ipv4;
|
|
return ebmb_lookup_longest(&expr->pattern_tree, &s->s_addr);
|
|
}
|
|
|
|
/* Parse a string. It is allocated and duplicated. */
|
|
int acl_parse_str(const char **text, struct acl_pattern *pattern, int *opaque, char **err)
|
|
{
|
|
int len;
|
|
|
|
len = strlen(*text);
|
|
pattern->type = SMP_T_CSTR;
|
|
|
|
if (pattern->flags & ACL_PAT_F_TREE_OK) {
|
|
/* we're allowed to put the data in a tree whose root is pointed
|
|
* to by val.tree.
|
|
*/
|
|
struct ebmb_node *node;
|
|
|
|
node = calloc(1, sizeof(*node) + len + 1);
|
|
if (!node) {
|
|
memprintf(err, "out of memory while loading string pattern");
|
|
return 0;
|
|
}
|
|
memcpy(node->key, *text, len + 1);
|
|
if (ebst_insert(pattern->val.tree, node) != node)
|
|
free(node); /* was a duplicate */
|
|
pattern->flags |= ACL_PAT_F_TREE; /* this pattern now contains a tree */
|
|
return 1;
|
|
}
|
|
|
|
pattern->ptr.str = strdup(*text);
|
|
if (!pattern->ptr.str) {
|
|
memprintf(err, "out of memory while loading string pattern");
|
|
return 0;
|
|
}
|
|
pattern->len = len;
|
|
return 1;
|
|
}
|
|
|
|
/* Parse a binary written in hexa. It is allocated. */
|
|
int acl_parse_bin(const char **text, struct acl_pattern *pattern, int *opaque, char **err)
|
|
{
|
|
int len;
|
|
const char *p = *text;
|
|
int i,j;
|
|
|
|
len = strlen(p);
|
|
if (len%2) {
|
|
memprintf(err, "an even number of hex digit is expected");
|
|
return 0;
|
|
}
|
|
|
|
pattern->type = SMP_T_CBIN;
|
|
pattern->len = len >> 1;
|
|
pattern->ptr.str = malloc(pattern->len);
|
|
if (!pattern->ptr.str) {
|
|
memprintf(err, "out of memory while loading string pattern");
|
|
return 0;
|
|
}
|
|
|
|
i = j = 0;
|
|
while (j < pattern->len) {
|
|
if (!ishex(p[i++]))
|
|
goto bad_input;
|
|
if (!ishex(p[i++]))
|
|
goto bad_input;
|
|
pattern->ptr.str[j++] = (hex2i(p[i-2]) << 4) + hex2i(p[i-1]);
|
|
}
|
|
return 1;
|
|
|
|
bad_input:
|
|
memprintf(err, "an hex digit is expected (found '%c')", p[i-1]);
|
|
free(pattern->ptr.str);
|
|
return 0;
|
|
}
|
|
|
|
/* Parse and concatenate all further strings into one. */
|
|
int
|
|
acl_parse_strcat(const char **text, struct acl_pattern *pattern, int *opaque, char **err)
|
|
{
|
|
|
|
int len = 0, i;
|
|
char *s;
|
|
|
|
for (i = 0; *text[i]; i++)
|
|
len += strlen(text[i])+1;
|
|
|
|
pattern->type = SMP_T_CSTR;
|
|
pattern->ptr.str = s = calloc(1, len);
|
|
if (!pattern->ptr.str) {
|
|
memprintf(err, "out of memory while loading pattern");
|
|
return 0;
|
|
}
|
|
|
|
for (i = 0; *text[i]; i++)
|
|
s += sprintf(s, i?" %s":"%s", text[i]);
|
|
|
|
pattern->len = len;
|
|
|
|
return i;
|
|
}
|
|
|
|
/* Free data allocated by acl_parse_reg */
|
|
static void acl_free_reg(void *ptr)
|
|
{
|
|
regex_free(ptr);
|
|
}
|
|
|
|
/* Parse a regex. It is allocated. */
|
|
int acl_parse_reg(const char **text, struct acl_pattern *pattern, int *opaque, char **err)
|
|
{
|
|
regex *preg;
|
|
|
|
preg = calloc(1, sizeof(*preg));
|
|
|
|
if (!preg) {
|
|
memprintf(err, "out of memory while loading pattern");
|
|
return 0;
|
|
}
|
|
|
|
if (!regex_comp(*text, preg, !(pattern->flags & ACL_PAT_F_IGNORE_CASE), 0, err)) {
|
|
free(preg);
|
|
return 0;
|
|
}
|
|
|
|
pattern->ptr.reg = preg;
|
|
pattern->freeptrbuf = &acl_free_reg;
|
|
return 1;
|
|
}
|
|
|
|
/* Parse a range of positive integers delimited by either ':' or '-'. If only
|
|
* one integer is read, it is set as both min and max. An operator may be
|
|
* specified as the prefix, among this list of 5 :
|
|
*
|
|
* 0:eq, 1:gt, 2:ge, 3:lt, 4:le
|
|
*
|
|
* The default operator is "eq". It supports range matching. Ranges are
|
|
* rejected for other operators. The operator may be changed at any time.
|
|
* The operator is stored in the 'opaque' argument.
|
|
*
|
|
* If err is non-NULL, an error message will be returned there on errors and
|
|
* the caller will have to free it.
|
|
*
|
|
*/
|
|
int acl_parse_int(const char **text, struct acl_pattern *pattern, int *opaque, char **err)
|
|
{
|
|
signed long long i;
|
|
unsigned int j, last, skip = 0;
|
|
const char *ptr = *text;
|
|
|
|
pattern->type = SMP_T_UINT;
|
|
while (!isdigit((unsigned char)*ptr)) {
|
|
switch (get_std_op(ptr)) {
|
|
case STD_OP_EQ: *opaque = 0; break;
|
|
case STD_OP_GT: *opaque = 1; break;
|
|
case STD_OP_GE: *opaque = 2; break;
|
|
case STD_OP_LT: *opaque = 3; break;
|
|
case STD_OP_LE: *opaque = 4; break;
|
|
default:
|
|
memprintf(err, "'%s' is neither a number nor a supported operator", ptr);
|
|
return 0;
|
|
}
|
|
|
|
skip++;
|
|
ptr = text[skip];
|
|
}
|
|
|
|
last = i = 0;
|
|
while (1) {
|
|
j = *ptr++;
|
|
if ((j == '-' || j == ':') && !last) {
|
|
last++;
|
|
pattern->val.range.min = i;
|
|
i = 0;
|
|
continue;
|
|
}
|
|
j -= '0';
|
|
if (j > 9)
|
|
// also catches the terminating zero
|
|
break;
|
|
i *= 10;
|
|
i += j;
|
|
}
|
|
|
|
if (last && *opaque >= 1 && *opaque <= 4) {
|
|
/* having a range with a min or a max is absurd */
|
|
memprintf(err, "integer range '%s' specified with a comparison operator", text[skip]);
|
|
return 0;
|
|
}
|
|
|
|
if (!last)
|
|
pattern->val.range.min = i;
|
|
pattern->val.range.max = i;
|
|
|
|
switch (*opaque) {
|
|
case 0: /* eq */
|
|
pattern->val.range.min_set = 1;
|
|
pattern->val.range.max_set = 1;
|
|
break;
|
|
case 1: /* gt */
|
|
pattern->val.range.min++; /* gt = ge + 1 */
|
|
case 2: /* ge */
|
|
pattern->val.range.min_set = 1;
|
|
pattern->val.range.max_set = 0;
|
|
break;
|
|
case 3: /* lt */
|
|
pattern->val.range.max--; /* lt = le - 1 */
|
|
case 4: /* le */
|
|
pattern->val.range.min_set = 0;
|
|
pattern->val.range.max_set = 1;
|
|
break;
|
|
}
|
|
return skip + 1;
|
|
}
|
|
|
|
/* Parse a range of positive 2-component versions delimited by either ':' or
|
|
* '-'. The version consists in a major and a minor, both of which must be
|
|
* smaller than 65536, because internally they will be represented as a 32-bit
|
|
* integer.
|
|
* If only one version is read, it is set as both min and max. Just like for
|
|
* pure integers, an operator may be specified as the prefix, among this list
|
|
* of 5 :
|
|
*
|
|
* 0:eq, 1:gt, 2:ge, 3:lt, 4:le
|
|
*
|
|
* The default operator is "eq". It supports range matching. Ranges are
|
|
* rejected for other operators. The operator may be changed at any time.
|
|
* The operator is stored in the 'opaque' argument. This allows constructs
|
|
* such as the following one :
|
|
*
|
|
* acl obsolete_ssl ssl_req_proto lt 3
|
|
* acl unsupported_ssl ssl_req_proto gt 3.1
|
|
* acl valid_ssl ssl_req_proto 3.0-3.1
|
|
*
|
|
*/
|
|
int acl_parse_dotted_ver(const char **text, struct acl_pattern *pattern, int *opaque, char **err)
|
|
{
|
|
signed long long i;
|
|
unsigned int j, last, skip = 0;
|
|
const char *ptr = *text;
|
|
|
|
|
|
while (!isdigit((unsigned char)*ptr)) {
|
|
switch (get_std_op(ptr)) {
|
|
case STD_OP_EQ: *opaque = 0; break;
|
|
case STD_OP_GT: *opaque = 1; break;
|
|
case STD_OP_GE: *opaque = 2; break;
|
|
case STD_OP_LT: *opaque = 3; break;
|
|
case STD_OP_LE: *opaque = 4; break;
|
|
default:
|
|
memprintf(err, "'%s' is neither a number nor a supported operator", ptr);
|
|
return 0;
|
|
}
|
|
|
|
skip++;
|
|
ptr = text[skip];
|
|
}
|
|
|
|
last = i = 0;
|
|
while (1) {
|
|
j = *ptr++;
|
|
if (j == '.') {
|
|
/* minor part */
|
|
if (i >= 65536)
|
|
return 0;
|
|
i <<= 16;
|
|
continue;
|
|
}
|
|
if ((j == '-' || j == ':') && !last) {
|
|
last++;
|
|
if (i < 65536)
|
|
i <<= 16;
|
|
pattern->val.range.min = i;
|
|
i = 0;
|
|
continue;
|
|
}
|
|
j -= '0';
|
|
if (j > 9)
|
|
// also catches the terminating zero
|
|
break;
|
|
i = (i & 0xFFFF0000) + (i & 0xFFFF) * 10;
|
|
i += j;
|
|
}
|
|
|
|
/* if we only got a major version, let's shift it now */
|
|
if (i < 65536)
|
|
i <<= 16;
|
|
|
|
if (last && *opaque >= 1 && *opaque <= 4) {
|
|
/* having a range with a min or a max is absurd */
|
|
memprintf(err, "version range '%s' specified with a comparison operator", text[skip]);
|
|
return 0;
|
|
}
|
|
|
|
if (!last)
|
|
pattern->val.range.min = i;
|
|
pattern->val.range.max = i;
|
|
|
|
switch (*opaque) {
|
|
case 0: /* eq */
|
|
pattern->val.range.min_set = 1;
|
|
pattern->val.range.max_set = 1;
|
|
break;
|
|
case 1: /* gt */
|
|
pattern->val.range.min++; /* gt = ge + 1 */
|
|
case 2: /* ge */
|
|
pattern->val.range.min_set = 1;
|
|
pattern->val.range.max_set = 0;
|
|
break;
|
|
case 3: /* lt */
|
|
pattern->val.range.max--; /* lt = le - 1 */
|
|
case 4: /* le */
|
|
pattern->val.range.min_set = 0;
|
|
pattern->val.range.max_set = 1;
|
|
break;
|
|
}
|
|
return skip + 1;
|
|
}
|
|
|
|
/* Parse an IP address and an optional mask in the form addr[/mask].
|
|
* The addr may either be an IPv4 address or a hostname. The mask
|
|
* may either be a dotted mask or a number of bits. Returns 1 if OK,
|
|
* otherwise 0. NOTE: IP address patterns are typed (IPV4/IPV6).
|
|
*/
|
|
int acl_parse_ip(const char **text, struct acl_pattern *pattern, int *opaque, char **err)
|
|
{
|
|
struct eb_root *tree = NULL;
|
|
if (pattern->flags & ACL_PAT_F_TREE_OK)
|
|
tree = pattern->val.tree;
|
|
|
|
if (str2net(*text, &pattern->val.ipv4.addr, &pattern->val.ipv4.mask)) {
|
|
unsigned int mask = ntohl(pattern->val.ipv4.mask.s_addr);
|
|
struct ebmb_node *node;
|
|
/* check if the mask is contiguous so that we can insert the
|
|
* network into the tree. A continuous mask has only ones on
|
|
* the left. This means that this mask + its lower bit added
|
|
* once again is null.
|
|
*/
|
|
pattern->type = SMP_T_IPV4;
|
|
if (mask + (mask & -mask) == 0 && tree) {
|
|
mask = mask ? 33 - flsnz(mask & -mask) : 0; /* equals cidr value */
|
|
/* FIXME: insert <addr>/<mask> into the tree here */
|
|
node = calloc(1, sizeof(*node) + 4); /* reserve 4 bytes for IPv4 address */
|
|
if (!node) {
|
|
memprintf(err, "out of memory while loading IPv4 pattern");
|
|
return 0;
|
|
}
|
|
memcpy(node->key, &pattern->val.ipv4.addr, 4); /* network byte order */
|
|
node->node.pfx = mask;
|
|
if (ebmb_insert_prefix(tree, node, 4) != node)
|
|
free(node); /* was a duplicate */
|
|
pattern->flags |= ACL_PAT_F_TREE;
|
|
return 1;
|
|
}
|
|
return 1;
|
|
}
|
|
else if (str62net(*text, &pattern->val.ipv6.addr, &pattern->val.ipv6.mask)) {
|
|
/* no tree support right now */
|
|
pattern->type = SMP_T_IPV6;
|
|
return 1;
|
|
}
|
|
else {
|
|
memprintf(err, "'%s' is not a valid IPv4 or IPv6 address", *text);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Registers the ACL keyword list <kwl> as a list of valid keywords for next
|
|
* parsing sessions.
|
|
*/
|
|
void acl_register_keywords(struct acl_kw_list *kwl)
|
|
{
|
|
LIST_ADDQ(&acl_keywords.list, &kwl->list);
|
|
}
|
|
|
|
/*
|
|
* Unregisters the ACL keyword list <kwl> from the list of valid keywords.
|
|
*/
|
|
void acl_unregister_keywords(struct acl_kw_list *kwl)
|
|
{
|
|
LIST_DEL(&kwl->list);
|
|
LIST_INIT(&kwl->list);
|
|
}
|
|
|
|
/* Return a pointer to the ACL <name> within the list starting at <head>, or
|
|
* NULL if not found.
|
|
*/
|
|
struct acl *find_acl_by_name(const char *name, struct list *head)
|
|
{
|
|
struct acl *acl;
|
|
list_for_each_entry(acl, head, list) {
|
|
if (strcmp(acl->name, name) == 0)
|
|
return acl;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* Return a pointer to the ACL keyword <kw>, or NULL if not found. Note that if
|
|
* <kw> contains an opening parenthesis, only the left part of it is checked.
|
|
*/
|
|
struct acl_keyword *find_acl_kw(const char *kw)
|
|
{
|
|
int index;
|
|
const char *kwend;
|
|
struct acl_kw_list *kwl;
|
|
|
|
kwend = strchr(kw, '(');
|
|
if (!kwend)
|
|
kwend = kw + strlen(kw);
|
|
|
|
list_for_each_entry(kwl, &acl_keywords.list, list) {
|
|
for (index = 0; kwl->kw[index].kw != NULL; index++) {
|
|
if ((strncmp(kwl->kw[index].kw, kw, kwend - kw) == 0) &&
|
|
kwl->kw[index].kw[kwend-kw] == 0)
|
|
return &kwl->kw[index];
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* NB: does nothing if <pat> is NULL */
|
|
static void free_pattern(struct acl_pattern *pat)
|
|
{
|
|
if (!pat)
|
|
return;
|
|
|
|
if (pat->ptr.ptr) {
|
|
if (pat->freeptrbuf)
|
|
pat->freeptrbuf(pat->ptr.ptr);
|
|
|
|
free(pat->ptr.ptr);
|
|
}
|
|
|
|
free(pat);
|
|
}
|
|
|
|
static void free_pattern_list(struct list *head)
|
|
{
|
|
struct acl_pattern *pat, *tmp;
|
|
list_for_each_entry_safe(pat, tmp, head, list)
|
|
free_pattern(pat);
|
|
}
|
|
|
|
static void free_pattern_tree(struct eb_root *root)
|
|
{
|
|
struct eb_node *node, *next;
|
|
node = eb_first(root);
|
|
while (node) {
|
|
next = eb_next(node);
|
|
free(node);
|
|
node = next;
|
|
}
|
|
}
|
|
|
|
static struct acl_expr *prune_acl_expr(struct acl_expr *expr)
|
|
{
|
|
struct arg *arg;
|
|
|
|
free_pattern_list(&expr->patterns);
|
|
free_pattern_tree(&expr->pattern_tree);
|
|
LIST_INIT(&expr->patterns);
|
|
|
|
for (arg = expr->args; arg; arg++) {
|
|
if (arg->type == ARGT_STOP)
|
|
break;
|
|
if (arg->type == ARGT_STR || arg->unresolved) {
|
|
free(arg->data.str.str);
|
|
arg->data.str.str = NULL;
|
|
arg->unresolved = 0;
|
|
}
|
|
}
|
|
|
|
if (expr->args != empty_arg_list)
|
|
free(expr->args);
|
|
return expr;
|
|
}
|
|
|
|
|
|
/* Reads patterns from a file. If <err_msg> is non-NULL, an error message will
|
|
* be returned there on errors and the caller will have to free it.
|
|
*/
|
|
static int acl_read_patterns_from_file(struct acl_expr *expr,
|
|
const char *filename, int patflags,
|
|
char **err)
|
|
{
|
|
FILE *file;
|
|
char *c;
|
|
const char *args[2];
|
|
struct acl_pattern *pattern;
|
|
int opaque;
|
|
int ret = 0;
|
|
int line = 0;
|
|
|
|
file = fopen(filename, "r");
|
|
if (!file) {
|
|
memprintf(err, "failed to open pattern file <%s>", filename);
|
|
return 0;
|
|
}
|
|
|
|
/* now parse all patterns. The file may contain only one pattern per
|
|
* line. If the line contains spaces, they will be part of the pattern.
|
|
* The pattern stops at the first CR, LF or EOF encountered.
|
|
*/
|
|
opaque = 0;
|
|
pattern = NULL;
|
|
args[1] = "";
|
|
while (fgets(trash.str, trash.size, file) != NULL) {
|
|
line++;
|
|
c = trash.str;
|
|
|
|
/* ignore lines beginning with a dash */
|
|
if (*c == '#')
|
|
continue;
|
|
|
|
/* strip leading spaces and tabs */
|
|
while (*c == ' ' || *c == '\t')
|
|
c++;
|
|
|
|
|
|
args[0] = c;
|
|
while (*c && *c != '\n' && *c != '\r')
|
|
c++;
|
|
*c = 0;
|
|
|
|
/* empty lines are ignored too */
|
|
if (c == args[0])
|
|
continue;
|
|
|
|
/* we keep the previous pattern along iterations as long as it's not used */
|
|
if (!pattern)
|
|
pattern = (struct acl_pattern *)malloc(sizeof(*pattern));
|
|
if (!pattern) {
|
|
memprintf(err, "out of memory when loading patterns from file <%s>", filename);
|
|
goto out_close;
|
|
}
|
|
|
|
memset(pattern, 0, sizeof(*pattern));
|
|
pattern->flags = patflags;
|
|
|
|
if (!(pattern->flags & ACL_PAT_F_IGNORE_CASE) &&
|
|
(expr->match == acl_match_str || expr->match == acl_match_ip)) {
|
|
/* we pre-set the data pointer to the tree's head so that functions
|
|
* which are able to insert in a tree know where to do that.
|
|
*/
|
|
pattern->flags |= ACL_PAT_F_TREE_OK;
|
|
pattern->val.tree = &expr->pattern_tree;
|
|
}
|
|
|
|
pattern->type = SMP_TYPES; /* unspecified type by default */
|
|
if (!expr->parse(args, pattern, &opaque, err))
|
|
goto out_free_pattern;
|
|
|
|
/* if the parser did not feed the tree, let's chain the pattern to the list */
|
|
if (!(pattern->flags & ACL_PAT_F_TREE)) {
|
|
LIST_ADDQ(&expr->patterns, &pattern->list);
|
|
pattern = NULL; /* get a new one */
|
|
}
|
|
}
|
|
|
|
ret = 1; /* success */
|
|
|
|
out_free_pattern:
|
|
free_pattern(pattern);
|
|
out_close:
|
|
fclose(file);
|
|
return ret;
|
|
}
|
|
|
|
/* Parse an ACL expression starting at <args>[0], and return it. If <err> is
|
|
* not NULL, it will be filled with a pointer to an error message in case of
|
|
* error. This pointer must be freeable or NULL. <al> is an arg_list serving
|
|
* as a list head to report missing dependencies.
|
|
*
|
|
* Right now, the only accepted syntax is :
|
|
* <subject> [<value>...]
|
|
*/
|
|
struct acl_expr *parse_acl_expr(const char **args, char **err, struct arg_list *al)
|
|
{
|
|
__label__ out_return, out_free_expr, out_free_pattern;
|
|
struct acl_expr *expr;
|
|
struct acl_keyword *aclkw;
|
|
struct acl_pattern *pattern;
|
|
int opaque, patflags;
|
|
const char *arg;
|
|
struct sample_fetch *smp = NULL;
|
|
|
|
/* First, we lookd for an ACL keyword. And if we don't find one, then
|
|
* we look for a sample fetch keyword.
|
|
*/
|
|
aclkw = find_acl_kw(args[0]);
|
|
if (!aclkw || !aclkw->parse) {
|
|
const char *kwend;
|
|
|
|
kwend = strchr(args[0], '(');
|
|
if (!kwend)
|
|
kwend = args[0] + strlen(args[0]);
|
|
smp = find_sample_fetch(args[0], kwend - args[0]);
|
|
|
|
if (!smp) {
|
|
memprintf(err, "unknown ACL or sample keyword '%s'", *args);
|
|
goto out_return;
|
|
}
|
|
}
|
|
|
|
expr = (struct acl_expr *)calloc(1, sizeof(*expr));
|
|
if (!expr) {
|
|
memprintf(err, "out of memory when parsing ACL expression");
|
|
goto out_return;
|
|
}
|
|
|
|
expr->kw = aclkw ? aclkw->kw : smp->kw;
|
|
LIST_INIT(&expr->patterns);
|
|
expr->pattern_tree = EB_ROOT_UNIQUE;
|
|
expr->parse = aclkw ? aclkw->parse : NULL;
|
|
expr->match = aclkw ? aclkw->match : NULL;
|
|
expr->args = empty_arg_list;
|
|
expr->smp = aclkw ? aclkw->smp : smp;
|
|
|
|
if (!expr->parse) {
|
|
/* some types can be automatically converted */
|
|
|
|
switch (expr->smp->out_type) {
|
|
case SMP_T_BOOL:
|
|
expr->parse = acl_parse_fcts[ACL_MATCH_BOOL];
|
|
expr->match = acl_match_fcts[ACL_MATCH_BOOL];
|
|
break;
|
|
case SMP_T_SINT:
|
|
case SMP_T_UINT:
|
|
expr->parse = acl_parse_fcts[ACL_MATCH_INT];
|
|
expr->match = acl_match_fcts[ACL_MATCH_INT];
|
|
break;
|
|
case SMP_T_IPV4:
|
|
case SMP_T_IPV6:
|
|
expr->parse = acl_parse_fcts[ACL_MATCH_IP];
|
|
expr->match = acl_match_fcts[ACL_MATCH_IP];
|
|
break;
|
|
}
|
|
}
|
|
|
|
arg = strchr(args[0], '(');
|
|
if (expr->smp->arg_mask) {
|
|
int nbargs = 0;
|
|
char *end;
|
|
|
|
if (arg != NULL) {
|
|
/* there are 0 or more arguments in the form "subject(arg[,arg]*)" */
|
|
arg++;
|
|
end = strchr(arg, ')');
|
|
if (!end) {
|
|
memprintf(err, "missing closing ')' after arguments to ACL keyword '%s'", expr->kw);
|
|
goto out_free_expr;
|
|
}
|
|
|
|
/* Parse the arguments. Note that currently we have no way to
|
|
* report parsing errors, hence the NULL in the error pointers.
|
|
* An error is also reported if some mandatory arguments are
|
|
* missing. We prepare the args list to report unresolved
|
|
* dependencies.
|
|
*/
|
|
al->ctx = ARGC_ACL;
|
|
al->kw = expr->kw;
|
|
al->conv = NULL;
|
|
nbargs = make_arg_list(arg, end - arg, expr->smp->arg_mask, &expr->args,
|
|
err, NULL, NULL, al);
|
|
if (nbargs < 0) {
|
|
/* note that make_arg_list will have set <err> here */
|
|
memprintf(err, "in argument to '%s', %s", expr->kw, *err);
|
|
goto out_free_expr;
|
|
}
|
|
|
|
if (!expr->args)
|
|
expr->args = empty_arg_list;
|
|
|
|
if (expr->smp->val_args && !expr->smp->val_args(expr->args, err)) {
|
|
/* invalid keyword argument, error must have been
|
|
* set by val_args().
|
|
*/
|
|
memprintf(err, "in argument to '%s', %s", expr->kw, *err);
|
|
goto out_free_expr;
|
|
}
|
|
}
|
|
else if (ARGM(expr->smp->arg_mask) == 1) {
|
|
int type = (expr->smp->arg_mask >> 4) & 15;
|
|
|
|
/* If a proxy is noted as a mandatory argument, we'll fake
|
|
* an empty one so that acl_find_targets() resolves it as
|
|
* the current one later.
|
|
*/
|
|
if (type != ARGT_FE && type != ARGT_BE && type != ARGT_TAB) {
|
|
memprintf(err, "ACL keyword '%s' expects %d arguments", expr->kw, ARGM(expr->smp->arg_mask));
|
|
goto out_free_expr;
|
|
}
|
|
|
|
/* Build an arg list containing the type as an empty string
|
|
* and the usual STOP.
|
|
*/
|
|
expr->args = calloc(2, sizeof(*expr->args));
|
|
expr->args[0].type = type;
|
|
expr->args[0].unresolved = 1;
|
|
expr->args[0].data.str.str = strdup("");
|
|
expr->args[0].data.str.size = 1;
|
|
expr->args[0].data.str.len = 0;
|
|
|
|
al->ctx = ARGC_ACL;
|
|
al->kw = expr->kw;
|
|
al->conv = NULL;
|
|
arg_list_add(al, &expr->args[0], 0);
|
|
|
|
expr->args[1].type = ARGT_STOP;
|
|
}
|
|
else if (ARGM(expr->smp->arg_mask)) {
|
|
/* there were some mandatory arguments */
|
|
memprintf(err, "ACL keyword '%s' expects %d arguments", expr->kw, ARGM(expr->smp->arg_mask));
|
|
goto out_free_expr;
|
|
}
|
|
}
|
|
else {
|
|
if (arg) {
|
|
/* no argument expected */
|
|
memprintf(err, "ACL keyword '%s' takes no argument", expr->kw);
|
|
goto out_free_expr;
|
|
}
|
|
}
|
|
|
|
/* Additional check to protect against common mistakes */
|
|
if (expr->parse && expr->smp->out_type != SMP_T_BOOL && !*args[1]) {
|
|
Warning("parsing acl keyword '%s' :\n"
|
|
" no pattern to match against were provided, so this ACL will never match.\n"
|
|
" If this is what you intended, please add '--' to get rid of this warning.\n"
|
|
" If you intended to match only for existence, please use '-m found'.\n"
|
|
" If you wanted to force an int to match as a bool, please use '-m bool'.\n"
|
|
"\n",
|
|
args[0]);
|
|
}
|
|
|
|
args++;
|
|
|
|
/* check for options before patterns. Supported options are :
|
|
* -i : ignore case for all patterns by default
|
|
* -f : read patterns from those files
|
|
* -m : force matching method (must be used before -f)
|
|
* -- : everything after this is not an option
|
|
*/
|
|
patflags = 0;
|
|
while (**args == '-') {
|
|
if ((*args)[1] == 'i')
|
|
patflags |= ACL_PAT_F_IGNORE_CASE;
|
|
else if ((*args)[1] == 'f') {
|
|
if (!expr->parse) {
|
|
memprintf(err, "matching method must be specified first (using '-m') when using a sample fetch of this type ('%s')", expr->kw);
|
|
goto out_free_expr;
|
|
}
|
|
|
|
if (!acl_read_patterns_from_file(expr, args[1], patflags | ACL_PAT_F_FROM_FILE, err))
|
|
goto out_free_expr;
|
|
args++;
|
|
}
|
|
else if ((*args)[1] == 'm') {
|
|
int idx;
|
|
|
|
if (!LIST_ISEMPTY(&expr->patterns) || !eb_is_empty(&expr->pattern_tree)) {
|
|
memprintf(err, "'-m' must only be specified before patterns and files in parsing ACL expression");
|
|
goto out_free_expr;
|
|
}
|
|
|
|
idx = acl_find_match_name(args[1]);
|
|
if (idx < 0) {
|
|
memprintf(err, "unknown matching method '%s' when parsing ACL expression", args[1]);
|
|
goto out_free_expr;
|
|
}
|
|
|
|
/* Note: -m found is always valid, bool/int are compatible, str/bin/reg/len are compatible */
|
|
if (idx == ACL_MATCH_FOUND || /* -m found */
|
|
((idx == ACL_MATCH_BOOL || idx == ACL_MATCH_INT) && /* -m bool/int */
|
|
(expr->smp->out_type == SMP_T_BOOL ||
|
|
expr->smp->out_type == SMP_T_UINT ||
|
|
expr->smp->out_type == SMP_T_SINT)) ||
|
|
(idx == ACL_MATCH_IP && /* -m ip */
|
|
(expr->smp->out_type == SMP_T_IPV4 ||
|
|
expr->smp->out_type == SMP_T_IPV6)) ||
|
|
((idx == ACL_MATCH_BIN || idx == ACL_MATCH_LEN || idx == ACL_MATCH_STR ||
|
|
idx == ACL_MATCH_BEG || idx == ACL_MATCH_SUB || idx == ACL_MATCH_DIR ||
|
|
idx == ACL_MATCH_DOM || idx == ACL_MATCH_END || idx == ACL_MATCH_REG) && /* strings */
|
|
(expr->smp->out_type == SMP_T_STR ||
|
|
expr->smp->out_type == SMP_T_BIN ||
|
|
expr->smp->out_type == SMP_T_CSTR ||
|
|
expr->smp->out_type == SMP_T_CBIN))) {
|
|
expr->parse = acl_parse_fcts[idx];
|
|
expr->match = acl_match_fcts[idx];
|
|
}
|
|
else {
|
|
memprintf(err, "matching method '%s' cannot be used with fetch keyword '%s'", args[1], expr->kw);
|
|
goto out_free_expr;
|
|
}
|
|
args++;
|
|
}
|
|
else if ((*args)[1] == '-') {
|
|
args++;
|
|
break;
|
|
}
|
|
else
|
|
break;
|
|
args++;
|
|
}
|
|
|
|
if (!expr->parse) {
|
|
memprintf(err, "matching method must be specified first (using '-m') when using a sample fetch of this type ('%s')", expr->kw);
|
|
goto out_free_expr;
|
|
}
|
|
|
|
/* now parse all patterns */
|
|
opaque = 0;
|
|
while (**args) {
|
|
int ret;
|
|
pattern = (struct acl_pattern *)calloc(1, sizeof(*pattern));
|
|
if (!pattern) {
|
|
memprintf(err, "out of memory when parsing ACL pattern");
|
|
goto out_free_expr;
|
|
}
|
|
pattern->flags = patflags;
|
|
|
|
pattern->type = SMP_TYPES; /* unspecified type */
|
|
ret = expr->parse(args, pattern, &opaque, err);
|
|
if (!ret)
|
|
goto out_free_pattern;
|
|
|
|
LIST_ADDQ(&expr->patterns, &pattern->list);
|
|
args += ret;
|
|
}
|
|
|
|
return expr;
|
|
|
|
out_free_pattern:
|
|
free_pattern(pattern);
|
|
out_free_expr:
|
|
prune_acl_expr(expr);
|
|
free(expr);
|
|
out_return:
|
|
return NULL;
|
|
}
|
|
|
|
/* Purge everything in the acl <acl>, then return <acl>. */
|
|
struct acl *prune_acl(struct acl *acl) {
|
|
|
|
struct acl_expr *expr, *exprb;
|
|
|
|
free(acl->name);
|
|
|
|
list_for_each_entry_safe(expr, exprb, &acl->expr, list) {
|
|
LIST_DEL(&expr->list);
|
|
prune_acl_expr(expr);
|
|
free(expr);
|
|
}
|
|
|
|
return acl;
|
|
}
|
|
|
|
/* Parse an ACL with the name starting at <args>[0], and with a list of already
|
|
* known ACLs in <acl>. If the ACL was not in the list, it will be added.
|
|
* A pointer to that ACL is returned. If the ACL has an empty name, then it's
|
|
* an anonymous one and it won't be merged with any other one. If <err> is not
|
|
* NULL, it will be filled with an appropriate error. This pointer must be
|
|
* freeable or NULL. <al> is the arg_list serving as a head for unresolved
|
|
* dependencies.
|
|
*
|
|
* args syntax: <aclname> <acl_expr>
|
|
*/
|
|
struct acl *parse_acl(const char **args, struct list *known_acl, char **err, struct arg_list *al)
|
|
{
|
|
__label__ out_return, out_free_acl_expr, out_free_name;
|
|
struct acl *cur_acl;
|
|
struct acl_expr *acl_expr;
|
|
char *name;
|
|
const char *pos;
|
|
|
|
if (**args && (pos = invalid_char(*args))) {
|
|
memprintf(err, "invalid character in ACL name : '%c'", *pos);
|
|
goto out_return;
|
|
}
|
|
|
|
acl_expr = parse_acl_expr(args + 1, err, al);
|
|
if (!acl_expr) {
|
|
/* parse_acl_expr will have filled <err> here */
|
|
goto out_return;
|
|
}
|
|
|
|
/* Check for args beginning with an opening parenthesis just after the
|
|
* subject, as this is almost certainly a typo. Right now we can only
|
|
* emit a warning, so let's do so.
|
|
*/
|
|
if (!strchr(args[1], '(') && *args[2] == '(')
|
|
Warning("parsing acl '%s' :\n"
|
|
" matching '%s' for pattern '%s' is likely a mistake and probably\n"
|
|
" not what you want. Maybe you need to remove the extraneous space before '('.\n"
|
|
" If you are really sure this is not an error, please insert '--' between the\n"
|
|
" match and the pattern to make this warning message disappear.\n",
|
|
args[0], args[1], args[2]);
|
|
|
|
if (*args[0])
|
|
cur_acl = find_acl_by_name(args[0], known_acl);
|
|
else
|
|
cur_acl = NULL;
|
|
|
|
if (!cur_acl) {
|
|
name = strdup(args[0]);
|
|
if (!name) {
|
|
memprintf(err, "out of memory when parsing ACL");
|
|
goto out_free_acl_expr;
|
|
}
|
|
cur_acl = (struct acl *)calloc(1, sizeof(*cur_acl));
|
|
if (cur_acl == NULL) {
|
|
memprintf(err, "out of memory when parsing ACL");
|
|
goto out_free_name;
|
|
}
|
|
|
|
LIST_INIT(&cur_acl->expr);
|
|
LIST_ADDQ(known_acl, &cur_acl->list);
|
|
cur_acl->name = name;
|
|
}
|
|
|
|
/* We want to know what features the ACL needs (typically HTTP parsing),
|
|
* and where it may be used. If an ACL relies on multiple matches, it is
|
|
* OK if at least one of them may match in the context where it is used.
|
|
*/
|
|
cur_acl->use |= acl_expr->smp->use;
|
|
cur_acl->val |= acl_expr->smp->val;
|
|
LIST_ADDQ(&cur_acl->expr, &acl_expr->list);
|
|
return cur_acl;
|
|
|
|
out_free_name:
|
|
free(name);
|
|
out_free_acl_expr:
|
|
prune_acl_expr(acl_expr);
|
|
free(acl_expr);
|
|
out_return:
|
|
return NULL;
|
|
}
|
|
|
|
/* Some useful ACLs provided by default. Only those used are allocated. */
|
|
|
|
const struct {
|
|
const char *name;
|
|
const char *expr[4]; /* put enough for longest expression */
|
|
} default_acl_list[] = {
|
|
{ .name = "TRUE", .expr = {"always_true",""}},
|
|
{ .name = "FALSE", .expr = {"always_false",""}},
|
|
{ .name = "LOCALHOST", .expr = {"src","127.0.0.1/8",""}},
|
|
{ .name = "HTTP", .expr = {"req_proto_http",""}},
|
|
{ .name = "HTTP_1.0", .expr = {"req_ver","1.0",""}},
|
|
{ .name = "HTTP_1.1", .expr = {"req_ver","1.1",""}},
|
|
{ .name = "METH_CONNECT", .expr = {"method","CONNECT",""}},
|
|
{ .name = "METH_GET", .expr = {"method","GET","HEAD",""}},
|
|
{ .name = "METH_HEAD", .expr = {"method","HEAD",""}},
|
|
{ .name = "METH_OPTIONS", .expr = {"method","OPTIONS",""}},
|
|
{ .name = "METH_POST", .expr = {"method","POST",""}},
|
|
{ .name = "METH_TRACE", .expr = {"method","TRACE",""}},
|
|
{ .name = "HTTP_URL_ABS", .expr = {"url_reg","^[^/:]*://",""}},
|
|
{ .name = "HTTP_URL_SLASH", .expr = {"url_beg","/",""}},
|
|
{ .name = "HTTP_URL_STAR", .expr = {"url","*",""}},
|
|
{ .name = "HTTP_CONTENT", .expr = {"hdr_val(content-length)","gt","0",""}},
|
|
{ .name = "RDP_COOKIE", .expr = {"req_rdp_cookie_cnt","gt","0",""}},
|
|
{ .name = "REQ_CONTENT", .expr = {"req_len","gt","0",""}},
|
|
{ .name = "WAIT_END", .expr = {"wait_end",""}},
|
|
{ .name = NULL, .expr = {""}}
|
|
};
|
|
|
|
/* Find a default ACL from the default_acl list, compile it and return it.
|
|
* If the ACL is not found, NULL is returned. In theory, it cannot fail,
|
|
* except when default ACLs are broken, in which case it will return NULL.
|
|
* If <known_acl> is not NULL, the ACL will be queued at its tail. If <err> is
|
|
* not NULL, it will be filled with an error message if an error occurs. This
|
|
* pointer must be freeable or NULL. <al> is an arg_list serving as a list head
|
|
* to report missing dependencies.
|
|
*/
|
|
static struct acl *find_acl_default(const char *acl_name, struct list *known_acl,
|
|
char **err, struct arg_list *al)
|
|
{
|
|
__label__ out_return, out_free_acl_expr, out_free_name;
|
|
struct acl *cur_acl;
|
|
struct acl_expr *acl_expr;
|
|
char *name;
|
|
int index;
|
|
|
|
for (index = 0; default_acl_list[index].name != NULL; index++) {
|
|
if (strcmp(acl_name, default_acl_list[index].name) == 0)
|
|
break;
|
|
}
|
|
|
|
if (default_acl_list[index].name == NULL) {
|
|
memprintf(err, "no such ACL : '%s'", acl_name);
|
|
return NULL;
|
|
}
|
|
|
|
acl_expr = parse_acl_expr((const char **)default_acl_list[index].expr, err, al);
|
|
if (!acl_expr) {
|
|
/* parse_acl_expr must have filled err here */
|
|
goto out_return;
|
|
}
|
|
|
|
name = strdup(acl_name);
|
|
if (!name) {
|
|
memprintf(err, "out of memory when building default ACL '%s'", acl_name);
|
|
goto out_free_acl_expr;
|
|
}
|
|
|
|
cur_acl = (struct acl *)calloc(1, sizeof(*cur_acl));
|
|
if (cur_acl == NULL) {
|
|
memprintf(err, "out of memory when building default ACL '%s'", acl_name);
|
|
goto out_free_name;
|
|
}
|
|
|
|
cur_acl->name = name;
|
|
cur_acl->use |= acl_expr->smp->use;
|
|
cur_acl->val |= acl_expr->smp->val;
|
|
LIST_INIT(&cur_acl->expr);
|
|
LIST_ADDQ(&cur_acl->expr, &acl_expr->list);
|
|
if (known_acl)
|
|
LIST_ADDQ(known_acl, &cur_acl->list);
|
|
|
|
return cur_acl;
|
|
|
|
out_free_name:
|
|
free(name);
|
|
out_free_acl_expr:
|
|
prune_acl_expr(acl_expr);
|
|
free(acl_expr);
|
|
out_return:
|
|
return NULL;
|
|
}
|
|
|
|
/* Purge everything in the acl_cond <cond>, then return <cond>. */
|
|
struct acl_cond *prune_acl_cond(struct acl_cond *cond)
|
|
{
|
|
struct acl_term_suite *suite, *tmp_suite;
|
|
struct acl_term *term, *tmp_term;
|
|
|
|
/* iterate through all term suites and free all terms and all suites */
|
|
list_for_each_entry_safe(suite, tmp_suite, &cond->suites, list) {
|
|
list_for_each_entry_safe(term, tmp_term, &suite->terms, list)
|
|
free(term);
|
|
free(suite);
|
|
}
|
|
return cond;
|
|
}
|
|
|
|
/* Parse an ACL condition starting at <args>[0], relying on a list of already
|
|
* known ACLs passed in <known_acl>. The new condition is returned (or NULL in
|
|
* case of low memory). Supports multiple conditions separated by "or". If
|
|
* <err> is not NULL, it will be filled with a pointer to an error message in
|
|
* case of error, that the caller is responsible for freeing. The initial
|
|
* location must either be freeable or NULL. The list <al> serves as a list head
|
|
* for unresolved dependencies.
|
|
*/
|
|
struct acl_cond *parse_acl_cond(const char **args, struct list *known_acl,
|
|
int pol, char **err, struct arg_list *al)
|
|
{
|
|
__label__ out_return, out_free_suite, out_free_term;
|
|
int arg, neg;
|
|
const char *word;
|
|
struct acl *cur_acl;
|
|
struct acl_term *cur_term;
|
|
struct acl_term_suite *cur_suite;
|
|
struct acl_cond *cond;
|
|
unsigned int suite_val;
|
|
|
|
cond = (struct acl_cond *)calloc(1, sizeof(*cond));
|
|
if (cond == NULL) {
|
|
memprintf(err, "out of memory when parsing condition");
|
|
goto out_return;
|
|
}
|
|
|
|
LIST_INIT(&cond->list);
|
|
LIST_INIT(&cond->suites);
|
|
cond->pol = pol;
|
|
cond->val = 0;
|
|
|
|
cur_suite = NULL;
|
|
suite_val = ~0U;
|
|
neg = 0;
|
|
for (arg = 0; *args[arg]; arg++) {
|
|
word = args[arg];
|
|
|
|
/* remove as many exclamation marks as we can */
|
|
while (*word == '!') {
|
|
neg = !neg;
|
|
word++;
|
|
}
|
|
|
|
/* an empty word is allowed because we cannot force the user to
|
|
* always think about not leaving exclamation marks alone.
|
|
*/
|
|
if (!*word)
|
|
continue;
|
|
|
|
if (strcasecmp(word, "or") == 0 || strcmp(word, "||") == 0) {
|
|
/* new term suite */
|
|
cond->val |= suite_val;
|
|
suite_val = ~0U;
|
|
cur_suite = NULL;
|
|
neg = 0;
|
|
continue;
|
|
}
|
|
|
|
if (strcmp(word, "{") == 0) {
|
|
/* we may have a complete ACL expression between two braces,
|
|
* find the last one.
|
|
*/
|
|
int arg_end = arg + 1;
|
|
const char **args_new;
|
|
|
|
while (*args[arg_end] && strcmp(args[arg_end], "}") != 0)
|
|
arg_end++;
|
|
|
|
if (!*args[arg_end]) {
|
|
memprintf(err, "missing closing '}' in condition");
|
|
goto out_free_suite;
|
|
}
|
|
|
|
args_new = calloc(1, (arg_end - arg + 1) * sizeof(*args_new));
|
|
if (!args_new) {
|
|
memprintf(err, "out of memory when parsing condition");
|
|
goto out_free_suite;
|
|
}
|
|
|
|
args_new[0] = "";
|
|
memcpy(args_new + 1, args + arg + 1, (arg_end - arg) * sizeof(*args_new));
|
|
args_new[arg_end - arg] = "";
|
|
cur_acl = parse_acl(args_new, known_acl, err, al);
|
|
free(args_new);
|
|
|
|
if (!cur_acl) {
|
|
/* note that parse_acl() must have filled <err> here */
|
|
goto out_free_suite;
|
|
}
|
|
word = args[arg + 1];
|
|
arg = arg_end;
|
|
}
|
|
else {
|
|
/* search for <word> in the known ACL names. If we do not find
|
|
* it, let's look for it in the default ACLs, and if found, add
|
|
* it to the list of ACLs of this proxy. This makes it possible
|
|
* to override them.
|
|
*/
|
|
cur_acl = find_acl_by_name(word, known_acl);
|
|
if (cur_acl == NULL) {
|
|
cur_acl = find_acl_default(word, known_acl, err, al);
|
|
if (cur_acl == NULL) {
|
|
/* note that find_acl_default() must have filled <err> here */
|
|
goto out_free_suite;
|
|
}
|
|
}
|
|
}
|
|
|
|
cur_term = (struct acl_term *)calloc(1, sizeof(*cur_term));
|
|
if (cur_term == NULL) {
|
|
memprintf(err, "out of memory when parsing condition");
|
|
goto out_free_suite;
|
|
}
|
|
|
|
cur_term->acl = cur_acl;
|
|
cur_term->neg = neg;
|
|
|
|
/* Here it is a bit complex. The acl_term_suite is a conjunction
|
|
* of many terms. It may only be used if all of its terms are
|
|
* usable at the same time. So the suite's validity domain is an
|
|
* AND between all ACL keywords' ones. But, the global condition
|
|
* is valid if at least one term suite is OK. So it's an OR between
|
|
* all of their validity domains. We could emit a warning as soon
|
|
* as suite_val is null because it means that the last ACL is not
|
|
* compatible with the previous ones. Let's remain simple for now.
|
|
*/
|
|
cond->use |= cur_acl->use;
|
|
suite_val &= cur_acl->val;
|
|
|
|
if (!cur_suite) {
|
|
cur_suite = (struct acl_term_suite *)calloc(1, sizeof(*cur_suite));
|
|
if (cur_suite == NULL) {
|
|
memprintf(err, "out of memory when parsing condition");
|
|
goto out_free_term;
|
|
}
|
|
LIST_INIT(&cur_suite->terms);
|
|
LIST_ADDQ(&cond->suites, &cur_suite->list);
|
|
}
|
|
LIST_ADDQ(&cur_suite->terms, &cur_term->list);
|
|
neg = 0;
|
|
}
|
|
|
|
cond->val |= suite_val;
|
|
return cond;
|
|
|
|
out_free_term:
|
|
free(cur_term);
|
|
out_free_suite:
|
|
prune_acl_cond(cond);
|
|
free(cond);
|
|
out_return:
|
|
return NULL;
|
|
}
|
|
|
|
/* Builds an ACL condition starting at the if/unless keyword. The complete
|
|
* condition is returned. NULL is returned in case of error or if the first
|
|
* word is neither "if" nor "unless". It automatically sets the file name and
|
|
* the line number in the condition for better error reporting, and sets the
|
|
* HTTP intiailization requirements in the proxy. If <err> is not NULL, it will
|
|
* be filled with a pointer to an error message in case of error, that the
|
|
* caller is responsible for freeing. The initial location must either be
|
|
* freeable or NULL.
|
|
*/
|
|
struct acl_cond *build_acl_cond(const char *file, int line, struct proxy *px, const char **args, char **err)
|
|
{
|
|
int pol = ACL_COND_NONE;
|
|
struct acl_cond *cond = NULL;
|
|
|
|
if (err)
|
|
*err = NULL;
|
|
|
|
if (!strcmp(*args, "if")) {
|
|
pol = ACL_COND_IF;
|
|
args++;
|
|
}
|
|
else if (!strcmp(*args, "unless")) {
|
|
pol = ACL_COND_UNLESS;
|
|
args++;
|
|
}
|
|
else {
|
|
memprintf(err, "conditions must start with either 'if' or 'unless'");
|
|
return NULL;
|
|
}
|
|
|
|
cond = parse_acl_cond(args, &px->acl, pol, err, &px->conf.args);
|
|
if (!cond) {
|
|
/* note that parse_acl_cond must have filled <err> here */
|
|
return NULL;
|
|
}
|
|
|
|
cond->file = file;
|
|
cond->line = line;
|
|
px->http_needed |= !!(cond->use & SMP_USE_HTTP_ANY);
|
|
return cond;
|
|
}
|
|
|
|
/* Execute condition <cond> and return either ACL_PAT_FAIL, ACL_PAT_MISS or
|
|
* ACL_PAT_PASS depending on the test results. ACL_PAT_MISS may only be
|
|
* returned if <opt> does not contain SMP_OPT_FINAL, indicating that incomplete
|
|
* data is being examined. The function automatically sets SMP_OPT_ITERATE.
|
|
* This function only computes the condition, it does not apply the polarity
|
|
* required by IF/UNLESS, it's up to the caller to do this using something like
|
|
* this :
|
|
*
|
|
* res = acl_pass(res);
|
|
* if (res == ACL_PAT_MISS)
|
|
* return 0;
|
|
* if (cond->pol == ACL_COND_UNLESS)
|
|
* res = !res;
|
|
*/
|
|
int acl_exec_cond(struct acl_cond *cond, struct proxy *px, struct session *l4, void *l7, unsigned int opt)
|
|
{
|
|
__label__ fetch_next;
|
|
struct acl_term_suite *suite;
|
|
struct acl_term *term;
|
|
struct acl_expr *expr;
|
|
struct acl *acl;
|
|
struct acl_pattern *pattern;
|
|
struct sample smp;
|
|
int acl_res, suite_res, cond_res;
|
|
|
|
/* ACLs are iterated over all values, so let's always set the flag to
|
|
* indicate this to the fetch functions.
|
|
*/
|
|
opt |= SMP_OPT_ITERATE;
|
|
|
|
/* We're doing a logical OR between conditions so we initialize to FAIL.
|
|
* The MISS status is propagated down from the suites.
|
|
*/
|
|
cond_res = ACL_PAT_FAIL;
|
|
list_for_each_entry(suite, &cond->suites, list) {
|
|
/* Evaluate condition suite <suite>. We stop at the first term
|
|
* which returns ACL_PAT_FAIL. The MISS status is still propagated
|
|
* in case of uncertainty in the result.
|
|
*/
|
|
|
|
/* we're doing a logical AND between terms, so we must set the
|
|
* initial value to PASS.
|
|
*/
|
|
suite_res = ACL_PAT_PASS;
|
|
list_for_each_entry(term, &suite->terms, list) {
|
|
acl = term->acl;
|
|
|
|
/* FIXME: use cache !
|
|
* check acl->cache_idx for this.
|
|
*/
|
|
|
|
/* ACL result not cached. Let's scan all the expressions
|
|
* and use the first one to match.
|
|
*/
|
|
acl_res = ACL_PAT_FAIL;
|
|
list_for_each_entry(expr, &acl->expr, list) {
|
|
/* we need to reset context and flags */
|
|
memset(&smp, 0, sizeof(smp));
|
|
fetch_next:
|
|
if (!expr->smp->process(px, l4, l7, opt, expr->args, &smp, expr->smp->kw)) {
|
|
/* maybe we could not fetch because of missing data */
|
|
if (smp.flags & SMP_F_MAY_CHANGE && !(opt & SMP_OPT_FINAL))
|
|
acl_res |= ACL_PAT_MISS;
|
|
continue;
|
|
}
|
|
|
|
if (expr->match == acl_match_nothing) {
|
|
if (smp.data.uint)
|
|
acl_res |= ACL_PAT_PASS;
|
|
else
|
|
acl_res |= ACL_PAT_FAIL;
|
|
}
|
|
else if (!expr->match) {
|
|
/* just check for existence */
|
|
acl_res |= ACL_PAT_PASS;
|
|
}
|
|
else {
|
|
if (!eb_is_empty(&expr->pattern_tree)) {
|
|
/* a tree is present, let's check what type it is */
|
|
if (expr->match == acl_match_str)
|
|
acl_res |= acl_lookup_str(&smp, expr) ? ACL_PAT_PASS : ACL_PAT_FAIL;
|
|
else if (expr->match == acl_match_ip)
|
|
acl_res |= acl_lookup_ip(&smp, expr) ? ACL_PAT_PASS : ACL_PAT_FAIL;
|
|
}
|
|
|
|
/* call the match() function for all tests on this value */
|
|
list_for_each_entry(pattern, &expr->patterns, list) {
|
|
if (acl_res == ACL_PAT_PASS)
|
|
break;
|
|
acl_res |= expr->match(&smp, pattern);
|
|
}
|
|
}
|
|
/*
|
|
* OK now acl_res holds the result of this expression
|
|
* as one of ACL_PAT_FAIL, ACL_PAT_MISS or ACL_PAT_PASS.
|
|
*
|
|
* Then if (!MISS) we can cache the result, and put
|
|
* (smp.flags & SMP_F_VOLATILE) in the cache flags.
|
|
*
|
|
* FIXME: implement cache.
|
|
*
|
|
*/
|
|
|
|
/* we're ORing these terms, so a single PASS is enough */
|
|
if (acl_res == ACL_PAT_PASS)
|
|
break;
|
|
|
|
if (smp.flags & SMP_F_NOT_LAST)
|
|
goto fetch_next;
|
|
|
|
/* sometimes we know the fetched data is subject to change
|
|
* later and give another chance for a new match (eg: request
|
|
* size, time, ...)
|
|
*/
|
|
if (smp.flags & SMP_F_MAY_CHANGE && !(opt & SMP_OPT_FINAL))
|
|
acl_res |= ACL_PAT_MISS;
|
|
}
|
|
/*
|
|
* Here we have the result of an ACL (cached or not).
|
|
* ACLs are combined, negated or not, to form conditions.
|
|
*/
|
|
|
|
if (term->neg)
|
|
acl_res = acl_neg(acl_res);
|
|
|
|
suite_res &= acl_res;
|
|
|
|
/* we're ANDing these terms, so a single FAIL or MISS is enough */
|
|
if (suite_res != ACL_PAT_PASS)
|
|
break;
|
|
}
|
|
cond_res |= suite_res;
|
|
|
|
/* we're ORing these terms, so a single PASS is enough */
|
|
if (cond_res == ACL_PAT_PASS)
|
|
break;
|
|
}
|
|
return cond_res;
|
|
}
|
|
|
|
/* Returns a pointer to the first ACL conflicting with usage at place <where>
|
|
* which is one of the SMP_VAL_* bits indicating a check place, or NULL if
|
|
* no conflict is found. Only full conflicts are detected (ACL is not usable).
|
|
* Use the next function to check for useless keywords.
|
|
*/
|
|
const struct acl *acl_cond_conflicts(const struct acl_cond *cond, unsigned int where)
|
|
{
|
|
struct acl_term_suite *suite;
|
|
struct acl_term *term;
|
|
struct acl *acl;
|
|
|
|
list_for_each_entry(suite, &cond->suites, list) {
|
|
list_for_each_entry(term, &suite->terms, list) {
|
|
acl = term->acl;
|
|
if (!(acl->val & where))
|
|
return acl;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* Returns a pointer to the first ACL and its first keyword to conflict with
|
|
* usage at place <where> which is one of the SMP_VAL_* bits indicating a check
|
|
* place. Returns true if a conflict is found, with <acl> and <kw> set (if non
|
|
* null), or false if not conflict is found. The first useless keyword is
|
|
* returned.
|
|
*/
|
|
int acl_cond_kw_conflicts(const struct acl_cond *cond, unsigned int where, struct acl const **acl, char const **kw)
|
|
{
|
|
struct acl_term_suite *suite;
|
|
struct acl_term *term;
|
|
struct acl_expr *expr;
|
|
|
|
list_for_each_entry(suite, &cond->suites, list) {
|
|
list_for_each_entry(term, &suite->terms, list) {
|
|
list_for_each_entry(expr, &term->acl->expr, list) {
|
|
if (!(expr->smp->val & where)) {
|
|
if (acl)
|
|
*acl = term->acl;
|
|
if (kw)
|
|
*kw = expr->kw;
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Find targets for userlist and groups in acl. Function returns the number
|
|
* of errors or OK if everything is fine. It must be called only once sample
|
|
* fetch arguments have been resolved (after smp_resolve_args()).
|
|
*/
|
|
int acl_find_targets(struct proxy *p)
|
|
{
|
|
|
|
struct acl *acl;
|
|
struct acl_expr *expr;
|
|
struct acl_pattern *pattern;
|
|
int cfgerr = 0;
|
|
|
|
list_for_each_entry(acl, &p->acl, list) {
|
|
list_for_each_entry(expr, &acl->expr, list) {
|
|
if (!strcmp(expr->kw, "http_auth_group")) {
|
|
/* Note: the ARGT_USR argument may only have been resolved earlier
|
|
* by smp_resolve_args().
|
|
*/
|
|
if (expr->args->unresolved) {
|
|
Alert("Internal bug in proxy %s: %sacl %s %s() makes use of unresolved userlist '%s'. Please report this.\n",
|
|
p->id, *acl->name ? "" : "anonymous ", acl->name, expr->kw, expr->args->data.str.str);
|
|
cfgerr++;
|
|
continue;
|
|
}
|
|
|
|
if (LIST_ISEMPTY(&expr->patterns)) {
|
|
Alert("proxy %s: acl %s %s(): no groups specified.\n",
|
|
p->id, acl->name, expr->kw);
|
|
cfgerr++;
|
|
continue;
|
|
}
|
|
|
|
list_for_each_entry(pattern, &expr->patterns, list) {
|
|
/* this keyword only has one argument */
|
|
pattern->val.group_mask = auth_resolve_groups(expr->args->data.usr, pattern->ptr.str);
|
|
|
|
if (!pattern->val.group_mask) {
|
|
Alert("proxy %s: acl %s %s(): invalid group '%s'.\n",
|
|
p->id, acl->name, expr->kw, pattern->ptr.str);
|
|
cfgerr++;
|
|
}
|
|
free(pattern->ptr.str);
|
|
pattern->ptr.str = NULL;
|
|
pattern->len = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return cfgerr;
|
|
}
|
|
|
|
/* initializes ACLs by resolving the sample fetch names they rely upon.
|
|
* Returns 0 on success, otherwise an error.
|
|
*/
|
|
int init_acl()
|
|
{
|
|
int err = 0;
|
|
int index;
|
|
const char *name;
|
|
struct acl_kw_list *kwl;
|
|
struct sample_fetch *smp;
|
|
|
|
list_for_each_entry(kwl, &acl_keywords.list, list) {
|
|
for (index = 0; kwl->kw[index].kw != NULL; index++) {
|
|
name = kwl->kw[index].fetch_kw;
|
|
if (!name)
|
|
name = kwl->kw[index].kw;
|
|
|
|
smp = find_sample_fetch(name, strlen(name));
|
|
if (!smp) {
|
|
Alert("Critical internal error: ACL keyword '%s' relies on sample fetch '%s' which was not registered!\n",
|
|
kwl->kw[index].kw, name);
|
|
err++;
|
|
continue;
|
|
}
|
|
kwl->kw[index].smp = smp;
|
|
}
|
|
}
|
|
return err;
|
|
}
|
|
|
|
/************************************************************************/
|
|
/* All supported sample and ACL keywords must be declared here. */
|
|
/************************************************************************/
|
|
|
|
/* Note: must not be declared <const> as its list will be overwritten.
|
|
* Please take care of keeping this list alphabetically sorted.
|
|
*/
|
|
static struct acl_kw_list acl_kws = {ILH, {
|
|
{ /* END */ },
|
|
}};
|
|
|
|
__attribute__((constructor))
|
|
static void __acl_init(void)
|
|
{
|
|
acl_register_keywords(&acl_kws);
|
|
}
|
|
|
|
|
|
/*
|
|
* Local variables:
|
|
* c-indent-level: 8
|
|
* c-basic-offset: 8
|
|
* End:
|
|
*/
|