/* * Functions managing stream_interface structures * * Copyright 2000-2012 Willy Tarreau * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* socket functions used when running a stream interface as a task */ static void stream_int_update(struct stream_interface *si); static void stream_int_update_embedded(struct stream_interface *si); static void stream_int_chk_rcv(struct stream_interface *si); static void stream_int_chk_snd(struct stream_interface *si); /* socket operations for embedded tasks */ struct sock_ops stream_int_embedded = { .update = stream_int_update_embedded, .shutr = NULL, .shutw = NULL, .chk_rcv = stream_int_chk_rcv, .chk_snd = stream_int_chk_snd, .read = NULL, .write = NULL, .close = NULL, }; /* socket operations for external tasks */ struct sock_ops stream_int_task = { .update = stream_int_update, .shutr = NULL, .shutw = NULL, .chk_rcv = stream_int_chk_rcv, .chk_snd = stream_int_chk_snd, .read = NULL, .write = NULL, .close = NULL, }; /* * This function only has to be called once after a wakeup event in case of * suspected timeout. It controls the stream interface timeouts and sets * si->flags accordingly. It does NOT close anything, as this timeout may * be used for any purpose. It returns 1 if the timeout fired, otherwise * zero. */ int stream_int_check_timeouts(struct stream_interface *si) { if (tick_is_expired(si->exp, now_ms)) { si->flags |= SI_FL_EXP; return 1; } return 0; } /* to be called only when in SI_ST_DIS with SI_FL_ERR */ void stream_int_report_error(struct stream_interface *si) { if (!si->err_type) si->err_type = SI_ET_DATA_ERR; si->ob->flags |= BF_WRITE_ERROR; si->ib->flags |= BF_READ_ERROR; } /* * Returns a message to the client ; the connection is shut down for read, * and the request is cleared so that no server connection can be initiated. * The buffer is marked for read shutdown on the other side to protect the * message, and the buffer write is enabled. The message is contained in a * "chunk". If it is null, then an empty message is used. The reply buffer does * not need to be empty before this, and its contents will not be overwritten. * The primary goal of this function is to return error messages to a client. */ void stream_int_retnclose(struct stream_interface *si, const struct chunk *msg) { buffer_auto_read(si->ib); buffer_abort(si->ib); buffer_auto_close(si->ib); buffer_erase(si->ib); bi_erase(si->ob); if (likely(msg && msg->len)) bo_inject(si->ob, msg->str, msg->len); si->ob->wex = tick_add_ifset(now_ms, si->ob->wto); buffer_auto_read(si->ob); buffer_auto_close(si->ob); buffer_shutr_now(si->ob); } /* default update function for scheduled tasks, not used for embedded tasks */ static void stream_int_update(struct stream_interface *si) { DPRINTF(stderr, "%s: si=%p, si->state=%d ib->flags=%08x ob->flags=%08x\n", __FUNCTION__, si, si->state, si->ib->flags, si->ob->flags); if (!(si->flags & SI_FL_DONT_WAKE) && si->owner) task_wakeup(si->owner, TASK_WOKEN_IO); } /* default update function for embedded tasks, to be used at the end of the i/o handler */ static void stream_int_update_embedded(struct stream_interface *si) { int old_flags = si->flags; DPRINTF(stderr, "%s: si=%p, si->state=%d ib->flags=%08x ob->flags=%08x\n", __FUNCTION__, si, si->state, si->ib->flags, si->ob->flags); if (si->state != SI_ST_EST) return; if ((si->ob->flags & (BF_OUT_EMPTY|BF_SHUTW|BF_HIJACK|BF_SHUTW_NOW)) == (BF_OUT_EMPTY|BF_SHUTW_NOW)) si_shutw(si); if ((si->ob->flags & (BF_FULL|BF_SHUTW|BF_SHUTW_NOW|BF_HIJACK)) == 0) si->flags |= SI_FL_WAIT_DATA; /* we're almost sure that we need some space if the buffer is not * empty, even if it's not full, because the applets can't fill it. */ if ((si->ib->flags & (BF_SHUTR|BF_OUT_EMPTY|BF_DONT_READ)) == 0) si->flags |= SI_FL_WAIT_ROOM; if (si->ob->flags & BF_WRITE_ACTIVITY) { if (tick_isset(si->ob->wex)) si->ob->wex = tick_add_ifset(now_ms, si->ob->wto); } if (si->ib->flags & BF_READ_ACTIVITY || (si->ob->flags & BF_WRITE_ACTIVITY && !(si->flags & SI_FL_INDEP_STR))) { if (tick_isset(si->ib->rex)) si->ib->rex = tick_add_ifset(now_ms, si->ib->rto); } /* save flags to detect changes */ old_flags = si->flags; if (likely((si->ob->flags & (BF_SHUTW|BF_WRITE_PARTIAL|BF_FULL|BF_DONT_READ)) == BF_WRITE_PARTIAL && (si->ob->prod->flags & SI_FL_WAIT_ROOM))) si_chk_rcv(si->ob->prod); if (((si->ib->flags & (BF_READ_PARTIAL|BF_OUT_EMPTY)) == BF_READ_PARTIAL) && (si->ib->cons->flags & SI_FL_WAIT_DATA)) { si_chk_snd(si->ib->cons); /* check if the consumer has freed some space */ if (!(si->ib->flags & BF_FULL)) si->flags &= ~SI_FL_WAIT_ROOM; } /* Note that we're trying to wake up in two conditions here : * - special event, which needs the holder task attention * - status indicating that the applet can go on working. This * is rather hard because we might be blocking on output and * don't want to wake up on input and vice-versa. The idea is * to only rely on the changes the chk_* might have performed. */ if (/* check stream interface changes */ ((old_flags & ~si->flags) & (SI_FL_WAIT_ROOM|SI_FL_WAIT_DATA)) || /* changes on the production side */ (si->ib->flags & (BF_READ_NULL|BF_READ_ERROR)) || si->state != SI_ST_EST || (si->flags & SI_FL_ERR) || ((si->ib->flags & BF_READ_PARTIAL) && (!si->ib->to_forward || si->ib->cons->state != SI_ST_EST)) || /* changes on the consumption side */ (si->ob->flags & (BF_WRITE_NULL|BF_WRITE_ERROR)) || ((si->ob->flags & BF_WRITE_ACTIVITY) && ((si->ob->flags & BF_SHUTW) || si->ob->prod->state != SI_ST_EST || ((si->ob->flags & BF_OUT_EMPTY) && !si->ob->to_forward)))) { if (!(si->flags & SI_FL_DONT_WAKE) && si->owner) task_wakeup(si->owner, TASK_WOKEN_IO); } if (si->ib->flags & BF_READ_ACTIVITY) si->ib->flags &= ~BF_READ_DONTWAIT; } /* * This function performs a shutdown-read on a stream interface in a connected * or init state (it does nothing for other states). It either shuts the read * side or marks itself as closed. The buffer flags are updated to reflect the * new state. If the stream interface has SI_FL_NOHALF, we also forward the * close to the write side. If a control layer is defined, then it is supposed * to be a socket layer and file descriptors are then shutdown or closed * accordingly. If no control layer is defined, then the SI is supposed to be * an embedded one and the owner task is woken up if it exists. The function * does not disable polling on the FD by itself, it returns non-zero instead * if the caller needs to do so (except when the FD is deleted where this is * implicit). */ int stream_int_shutr(struct stream_interface *si) { struct connection *conn = &si->conn; si->ib->flags &= ~BF_SHUTR_NOW; if (si->ib->flags & BF_SHUTR) return 0; si->ib->flags |= BF_SHUTR; si->ib->rex = TICK_ETERNITY; si->flags &= ~SI_FL_WAIT_ROOM; if (si->state != SI_ST_EST && si->state != SI_ST_CON) return 0; if (si->ob->flags & BF_SHUTW) { conn_data_close(&si->conn); if (conn->ctrl) fd_delete(si_fd(si)); si->state = SI_ST_DIS; si->exp = TICK_ETERNITY; if (si->release) si->release(si); } else if (si->flags & SI_FL_NOHALF) { /* we want to immediately forward this close to the write side */ return stream_int_shutw(si); } else if (conn->ctrl) { /* we want the caller to disable polling on this FD */ return 1; } /* note that if the task exists, it must unregister itself once it runs */ if (!conn->ctrl && !(si->flags & SI_FL_DONT_WAKE) && si->owner) task_wakeup(si->owner, TASK_WOKEN_IO); return 0; } /* * This function performs a shutdown-write on a stream interface in a connected or * init state (it does nothing for other states). It either shuts the write side * or marks itself as closed. The buffer flags are updated to reflect the new state. * It does also close everything if the SI was marked as being in error state. If * there is a data-layer shutdown, it is called. If a control layer is defined, then * it is supposed to be a socket layer and file descriptors are then shutdown or * closed accordingly. If no control layer is defined, then the SI is supposed to * be an embedded one and the owner task is woken up if it exists. The function * does not disable polling on the FD by itself, it returns non-zero instead if * the caller needs to do so (except when the FD is deleted where this is implicit). */ int stream_int_shutw(struct stream_interface *si) { struct connection *conn = &si->conn; si->ob->flags &= ~BF_SHUTW_NOW; if (si->ob->flags & BF_SHUTW) return 0; si->ob->flags |= BF_SHUTW; si->ob->wex = TICK_ETERNITY; si->flags &= ~SI_FL_WAIT_DATA; switch (si->state) { case SI_ST_EST: /* we have to shut before closing, otherwise some short messages * may never leave the system, especially when there are remaining * unread data in the socket input buffer, or when nolinger is set. * However, if SI_FL_NOLINGER is explicitly set, we know there is * no risk so we close both sides immediately. */ if (si->flags & SI_FL_ERR) { /* quick close, the socket is already shut. Remove pending flags. */ si->flags &= ~SI_FL_NOLINGER; } else if (si->flags & SI_FL_NOLINGER) { si->flags &= ~SI_FL_NOLINGER; if (conn->ctrl) { setsockopt(si_fd(si), SOL_SOCKET, SO_LINGER, (struct linger *) &nolinger, sizeof(struct linger)); } /* unclean data-layer shutdown */ if (conn->data && conn->data->shutw) conn->data->shutw(conn, 0); } else { /* clean data-layer shutdown */ if (conn->data && conn->data->shutw) conn->data->shutw(conn, 1); if (!(si->flags & SI_FL_NOHALF)) { /* We shutdown transport layer */ if (conn->ctrl) shutdown(si_fd(si), SHUT_WR); if (!(si->ib->flags & (BF_SHUTR|BF_DONT_READ))) { /* OK just a shutw, but we want the caller * to disable polling on this FD if exists. */ return !!conn->ctrl; } } } /* fall through */ case SI_ST_CON: /* we may have to close a pending connection, and mark the * response buffer as shutr */ conn_data_close(&si->conn); if (conn->ctrl) fd_delete(si_fd(si)); /* fall through */ case SI_ST_CER: case SI_ST_QUE: case SI_ST_TAR: si->state = SI_ST_DIS; if (si->release) si->release(si); default: si->flags &= ~SI_FL_WAIT_ROOM; si->ib->flags |= BF_SHUTR; si->ib->rex = TICK_ETERNITY; si->exp = TICK_ETERNITY; } /* note that if the task exists, it must unregister itself once it runs */ if (!conn->ctrl && !(si->flags & SI_FL_DONT_WAKE) && si->owner) task_wakeup(si->owner, TASK_WOKEN_IO); return 0; } /* default chk_rcv function for scheduled tasks */ static void stream_int_chk_rcv(struct stream_interface *si) { struct buffer *ib = si->ib; DPRINTF(stderr, "%s: si=%p, si->state=%d ib->flags=%08x ob->flags=%08x\n", __FUNCTION__, si, si->state, si->ib->flags, si->ob->flags); if (unlikely(si->state != SI_ST_EST || (ib->flags & BF_SHUTR))) return; if (ib->flags & (BF_FULL|BF_HIJACK|BF_DONT_READ)) { /* stop reading */ if ((ib->flags & (BF_FULL|BF_HIJACK|BF_DONT_READ)) == BF_FULL) si->flags |= SI_FL_WAIT_ROOM; } else { /* (re)start reading */ si->flags &= ~SI_FL_WAIT_ROOM; if (!(si->flags & SI_FL_DONT_WAKE) && si->owner) task_wakeup(si->owner, TASK_WOKEN_IO); } } /* default chk_snd function for scheduled tasks */ static void stream_int_chk_snd(struct stream_interface *si) { struct buffer *ob = si->ob; DPRINTF(stderr, "%s: si=%p, si->state=%d ib->flags=%08x ob->flags=%08x\n", __FUNCTION__, si, si->state, si->ib->flags, si->ob->flags); if (unlikely(si->state != SI_ST_EST || (si->ob->flags & BF_SHUTW))) return; if (!(si->flags & SI_FL_WAIT_DATA) || /* not waiting for data */ (ob->flags & BF_OUT_EMPTY)) /* called with nothing to send ! */ return; /* Otherwise there are remaining data to be sent in the buffer, * so we tell the handler. */ si->flags &= ~SI_FL_WAIT_DATA; if (!tick_isset(ob->wex)) ob->wex = tick_add_ifset(now_ms, ob->wto); if (!(si->flags & SI_FL_DONT_WAKE) && si->owner) task_wakeup(si->owner, TASK_WOKEN_IO); } /* Register an applet to handle a stream_interface as part of the stream * interface's owner task, which is returned. The SI will wake it up everytime * it is solicited. The task's processing function must call the applet's * function before returning. It must be deleted by the task handler using * stream_int_unregister_handler(), possibly from within the function itself. * It also pre-initializes applet.state to zero and the connection context * to NULL. */ struct task *stream_int_register_handler(struct stream_interface *si, struct si_applet *app) { DPRINTF(stderr, "registering handler %p for si %p (was %p)\n", app, si, si->owner); stream_interface_prepare(si, &stream_int_embedded); si->conn.ctrl = NULL; set_target_applet(&si->target, app); si->release = app->release; si->flags |= SI_FL_WAIT_DATA; return si->owner; } /* Register a function to handle a stream_interface as a standalone task. The * new task itself is returned and is assigned as si->owner. The stream_interface * pointer will be pointed to by the task's context. The handler can be detached * by using stream_int_unregister_handler(). * FIXME: the code should be updated to ensure that we don't change si->owner * anymore as this is not needed. However, process_session still relies on it. */ struct task *stream_int_register_handler_task(struct stream_interface *si, struct task *(*fct)(struct task *)) { struct task *t; DPRINTF(stderr, "registering handler %p for si %p (was %p)\n", fct, si, si->owner); stream_interface_prepare(si, &stream_int_task); si->conn.ctrl = NULL; clear_target(&si->target); si->release = NULL; si->flags |= SI_FL_WAIT_DATA; t = task_new(); si->owner = t; if (!t) return t; set_target_task(&si->target, t); t->process = fct; t->context = si; task_wakeup(si->owner, TASK_WOKEN_INIT); return t; } /* Unregister a stream interface handler. This must be called by the handler task * itself when it detects that it is in the SI_ST_DIS state. This function can * both detach standalone handlers and embedded handlers. */ void stream_int_unregister_handler(struct stream_interface *si) { if (si->target.type == TARG_TYPE_TASK) { /* external handler : kill the task */ task_delete(si->target.ptr.t); task_free(si->target.ptr.t); } si->release = NULL; si->owner = NULL; clear_target(&si->target); } /* This callback is used to send a valid PROXY protocol line to a socket being * established. It returns a combination of FD_WAIT_* if it wants some polling * before being called again, otherwise it returns zero and removes itself from * the connection's flags (the bit is provided in by the caller). */ int conn_si_send_proxy(struct connection *conn, unsigned int flag) { int fd = conn->t.sock.fd; struct stream_interface *si = container_of(conn, struct stream_interface, conn); struct buffer *b = si->ob; /* we might have been called just after an asynchronous shutw */ if (b->flags & BF_SHUTW) goto out_error; /* If we have a PROXY line to send, we'll use this to validate the * connection, in which case the connection is validated only once * we've sent the whole proxy line. Otherwise we use connect(). */ if (si->send_proxy_ofs) { int ret; /* The target server expects a PROXY line to be sent first. * If the send_proxy_ofs is negative, it corresponds to the * offset to start sending from then end of the proxy string * (which is recomputed every time since it's constant). If * it is positive, it means we have to send from the start. */ ret = make_proxy_line(trash, trashlen, &b->prod->addr.from, &b->prod->addr.to); if (!ret) goto out_error; if (si->send_proxy_ofs > 0) si->send_proxy_ofs = -ret; /* first call */ /* we have to send trash from (ret+sp for -sp bytes) */ ret = send(fd, trash + ret + si->send_proxy_ofs, -si->send_proxy_ofs, (b->flags & BF_OUT_EMPTY) ? 0 : MSG_MORE); if (ret == 0) goto out_wait; if (ret < 0) { if (errno == EAGAIN) goto out_wait; goto out_error; } si->send_proxy_ofs += ret; /* becomes zero once complete */ if (si->send_proxy_ofs != 0) goto out_wait; /* OK we've sent the whole line, we're connected */ } /* The FD is ready now, simply return and let the connection handler * notify upper layers if needed. */ if (conn->flags & CO_FL_WAIT_L4_CONN) conn->flags &= ~CO_FL_WAIT_L4_CONN; b->flags |= BF_WRITE_NULL; si->exp = TICK_ETERNITY; out_leave: conn->flags &= ~flag; return 0; out_error: /* Write error on the file descriptor. We mark the FD as STERROR so * that we don't use it anymore. The error is reported to the stream * interface which will take proper action. We must not perturbate the * buffer because the stream interface wants to ensure transparent * connection retries. */ conn->flags |= CO_FL_ERROR; fdtab[fd].ev &= ~FD_POLL_STICKY; conn_sock_stop_both(conn); goto out_leave; out_wait: conn_sock_stop_recv(conn); conn_sock_poll_send(conn); return FD_WAIT_WRITE; } /* function to be called on stream sockets after all I/O handlers */ void stream_sock_update_conn(struct connection *conn) { int fd = conn->t.sock.fd; struct stream_interface *si = container_of(conn, struct stream_interface, conn); DPRINTF(stderr, "%s: si=%p, si->state=%d ib->flags=%08x ob->flags=%08x\n", __FUNCTION__, si, si->state, si->ib->flags, si->ob->flags); if (conn->flags & CO_FL_ERROR) si->flags |= SI_FL_ERR; /* check for recent connection establishment */ if (unlikely(!(conn->flags & (CO_FL_WAIT_L4_CONN | CO_FL_WAIT_L6_CONN | CO_FL_CONNECTED)))) { si->exp = TICK_ETERNITY; si->ob->flags |= BF_WRITE_NULL; } /* process consumer side, only once if possible */ if (fdtab[fd].ev & (FD_POLL_OUT | FD_POLL_ERR)) { if (si->ob->flags & BF_OUT_EMPTY) { if (((si->ob->flags & (BF_SHUTW|BF_HIJACK|BF_SHUTW_NOW)) == BF_SHUTW_NOW) && (si->state == SI_ST_EST)) stream_int_shutw(si); conn_data_stop_send(conn); si->ob->wex = TICK_ETERNITY; } if ((si->ob->flags & (BF_FULL|BF_SHUTW|BF_SHUTW_NOW|BF_HIJACK)) == 0) si->flags |= SI_FL_WAIT_DATA; if (si->ob->flags & BF_WRITE_ACTIVITY) { /* update timeouts if we have written something */ if ((si->ob->flags & (BF_OUT_EMPTY|BF_SHUTW|BF_WRITE_PARTIAL)) == BF_WRITE_PARTIAL) if (tick_isset(si->ob->wex)) si->ob->wex = tick_add_ifset(now_ms, si->ob->wto); if (!(si->flags & SI_FL_INDEP_STR)) if (tick_isset(si->ib->rex)) si->ib->rex = tick_add_ifset(now_ms, si->ib->rto); if (likely((si->ob->flags & (BF_SHUTW|BF_WRITE_PARTIAL|BF_FULL|BF_DONT_READ)) == BF_WRITE_PARTIAL && (si->ob->prod->flags & SI_FL_WAIT_ROOM))) si_chk_rcv(si->ob->prod); } } /* process producer side, only once if possible */ if (fdtab[fd].ev & (FD_POLL_IN | FD_POLL_HUP | FD_POLL_ERR)) { /* We might have some data the consumer is waiting for. * We can do fast-forwarding, but we avoid doing this for partial * buffers, because it is very likely that it will be done again * immediately afterwards once the following data is parsed (eg: * HTTP chunking). */ if (((si->ib->flags & (BF_READ_PARTIAL|BF_OUT_EMPTY)) == BF_READ_PARTIAL) && (si->ib->pipe /* always try to send spliced data */ || (si->ib->i == 0 && (si->ib->cons->flags & SI_FL_WAIT_DATA)))) { int last_len = si->ib->pipe ? si->ib->pipe->data : 0; si_chk_snd(si->ib->cons); /* check if the consumer has freed some space */ if (!(si->ib->flags & BF_FULL) && (!last_len || !si->ib->pipe || si->ib->pipe->data < last_len)) si->flags &= ~SI_FL_WAIT_ROOM; } if (si->flags & SI_FL_WAIT_ROOM) { conn_data_stop_recv(conn); si->ib->rex = TICK_ETERNITY; } else if ((si->ib->flags & (BF_SHUTR|BF_READ_PARTIAL|BF_FULL|BF_DONT_READ|BF_READ_NOEXP)) == BF_READ_PARTIAL) { if (tick_isset(si->ib->rex)) si->ib->rex = tick_add_ifset(now_ms, si->ib->rto); } } /* wake the task up only when needed */ if (/* changes on the production side */ (si->ib->flags & (BF_READ_NULL|BF_READ_ERROR)) || si->state != SI_ST_EST || (si->flags & SI_FL_ERR) || ((si->ib->flags & BF_READ_PARTIAL) && (!si->ib->to_forward || si->ib->cons->state != SI_ST_EST)) || /* changes on the consumption side */ (si->ob->flags & (BF_WRITE_NULL|BF_WRITE_ERROR)) || ((si->ob->flags & BF_WRITE_ACTIVITY) && ((si->ob->flags & BF_SHUTW) || si->ob->prod->state != SI_ST_EST || ((si->ob->flags & BF_OUT_EMPTY) && !si->ob->to_forward)))) { task_wakeup(si->owner, TASK_WOKEN_IO); } if (si->ib->flags & BF_READ_ACTIVITY) si->ib->flags &= ~BF_READ_DONTWAIT; } /* * Local variables: * c-indent-level: 8 * c-basic-offset: 8 * End: */