When 'log' directive was implemented, the internal representation was
named 'struct logsrv', because the 'log' directive would directly point
to the log target, which used to be a (UDP) log server exclusively at
that time, hence the name.
But things have become more complex, since today 'log' directive can point
to ring targets (implicit, or named) for example.
Indeed, a 'log' directive does no longer reference the "final" server to
which the log will be sent, but instead it describes which log API and
parameters to use for transporting the log messages to the proper log
destination.
So now the term 'logsrv' is rather confusing and prevents us from
introducing a new level of abstraction because they would be mixed
with logsrv.
So in order to better designate this 'log' directive, and make it more
generic, we chose the word 'logger' which now replaces logsrv everywhere
it was used in the code (including related comments).
This is internal rewording, so no functional change should be expected
on user-side.
Now that we have sink_postresolve_logsrvs() function, we make use of it
for spoe-agent log postparsing logic.
This will allow this kind of config to work:
|spoe-agent test
| log tcp@127.0.0.1:514 local0
| use-backend xxx
Plus, consistency checks will also be performed as for regular log
directives used from global, log-forward or proxy sections.
Surprisingly, commit 00e00fb42 ("REORG: cfgparse: extract curproxy as a
global variable") caused a build breakage on the CI but not on two
developers' machines. It looks like it's dependent on the linker version
used. What happens is that flt_spoe.c already has a curproxy struct which
already is a copy of the one passed by the parser because it also needed
it to be exported, so they now conflict. Let's just drop this unused copy.
When a SPOE appctx is processing frames in sync mode, we must only skip
sending a new frame if it is still waiting for a ACK frame after a receive
attempt. It was performed before the receive attempt. As a consequence, if
the ACK frame was received, the SPOE appctx did not try to process queued
messages immediately. This could increase the queue time and thus slow down
the processing time of the stream.
Thanks to Daniel Epperson for his help to diagnose the bug.
This patch must be backported to every stable versions.
Now that we have free_acl_cond(cond) function that does cond prune then
frees cond, replace all occurences of this pattern:
| prune_acl_cond(cond)
| free(cond)
with:
| free_acl_cond(cond)
SPOE register a signal handler to be able to stop SPOE applets ASAP during
soft-stop. Disabled proxies must be ignored at this staged because they are
not fully configured.
For now, it is useless but this change is mandatory to fix a bug.
sc_need_room() now takes the required free space to receive more data as
parameter. All calls to this function are updated accordingly. For now, this
value is set but not used. When we are waiting for a buffer, 0 is used. So
we expect to be unblocked ASAP. However this must be reviewed because
SC_FL_NEED_BUF is probably enough in this case and this flag is already set
if the input buffer allocation fails.
This puts an end to the occasional confusion between the "now" date
that is internal, monotonic and not synchronized with the system's
date, and "date" which is the system's date and not necessarily
monotonic. Variable "now" was removed and replaced with a 64-bit
integer "now_ns" which is a counter of nanoseconds. It wraps every
585 years, so if all goes well (i.e. if humanity does not need
haproxy anymore in 500 years), it will just never wrap. This implies
that now_ns is never nul and that the zero value can reliably be used
as "not set yet" for a timestamp if needed. This will also simplify
date checks where it becomes possible again to do "date1<date2".
All occurrences of "tv_to_ns(&now)" were simply replaced by "now_ns".
Due to the intricacies between now, global_now and now_offset, all 3
had to be turned to nanoseconds at once. It's not a problem since all
of them were solely used in 3 functions in clock.c, but they make the
patch look bigger than it really is.
The clock_update_local_date() and clock_update_global_date() functions
are now much simpler as there's no need anymore to perform conversions
nor to round the timeval up or down.
The wrapping continues to happen by presetting the internal offset in
the short future so that the 32-bit now_ms continues to wrap 20 seconds
after boot.
The start_time used to calculate uptime can still be turned to
nanoseconds now. One interrogation concerns global_now_ms which is used
only for the freq counters. It's unclear whether there's more value in
using two variables that need to be synchronized sequentially like today
or to just use global_now_ns divided by 1 million. Both approaches will
work equally well on modern systems, the difference might come from
smaller ones. Better not change anyhting for now.
One benefit of the new approach is that we now have an internal date
with a resolution of the nanosecond and the precision of the microsecond,
which can be useful to extend some measurements given that timestamps
also have this resolution.
Instead we're using ns_to_sec(tv_to_ns(&now)) which allows the tv_sec
part to disappear. At this point, "now" is only used as a timeval in
clock.c where it is updated.
Instead of operating on {sec, usec} now we convert both operands to
ns then subtract them and convert to ms. This is a first step towards
dropping timeval from these timestamps.
Interestingly, tv_ms_elapsed() and tv_ms_remain() are no longer used at
all and could be removed.
It is possible to start too many applets on sporadic burst of events after
an inactivity period. It is due to the way we estimate if a new applet must
be created or not. It is based on a frequency counter. We compare the events
processing rate against the number of events currently processed (in
progress or waiting to be processed). But we should also take care of the
number of idle applets.
We already track the number of idle applets, but it is global and not
per-thread. Thus we now also track the number of idle applets per-thread. It
is not a big deal because this fills a hole in the spoe_agent structure.
Thanks to this counter, we can refrain applets creation if there is enough
idle applets to handle currently processed events.
This patch should be backported to every stable versions.
The debug messages were still emitted with a date taken from "now" instead
of "date", which was not correct a long time ago but which became worse in
2.8 since commit 28360dc ("MEDIUM: clock: force internal time to wrap early
after boot"). Let's fix it. No backport is needed.
Just like for other applets, we now use the SE descriptor instead of the
channel to report error and end-of-stream. We must just be sure to consume
request data when we are waiting the applet to be released.
This patch is bit different than others because messages handling is
dispatched in several functions. But idea if the same.
It was done by hand by callers when a shutdown for read or write was
performed. It is now always handled by the functions performing the
shutdown. This way the callers don't take care of it. This will avoid some
bugs.
The commit d5983cef8 ("MINOR: listener: remove the useless ->default_target
field") revealed a bug in the SPOE. No default-target must be defined for
the SPOE agent frontend. SPOE applets are used on the frontend side and a
TCP connection is established on the backend side.
Because of this bug, since the commit above, the stream target is set to the
SPOE applet instead of the backend connection, leading to a spinning loop on
the applet when it is released because are unable to close the backend side.
This patch should fix the issue #2040. It only affects the 2.8-DEV but to
avoid any future bug, it should be backported to all stable versions.
CF_READ_NULL flag is not really useful and used. It is a transient event
used to wakeup the stream. As we will see, all read events on a channel may
be resumed to only one and are all used to wake up the stream.
In this patch, we introduce CF_READ_EVENT flag as a replacement to
CF_READ_NULL. There is no breaking change for now, it is just a
rename. Gradually, other read events will be merged with this one.
A bug was introduced by the commit b042e4f6f ("BUG/MAJOR: spoe: properly
detach all agents when releasing the applet"). The fix is not correct. We
really want to known if the released appctx is the last one or not. It is
important when async mode is used. If there are still running applets, we
just need to remove the reference on the current applet from streams in the
async waiting queue.
With the commit above, in async mode, if there are still running applets, it
will work as expected. Otherwise a processing timeout will be reported for
all these streams. So it is not too bad. But for other modes (sync and
pipelining), the async waiting queue is always empty. If at least one stream
is waiting to send a message, a new applet is created. It is an issue if the
SPOA is unhealthy because the number of running applets may explode.
However, the commit above tried to fix an issue. The bug is in fact when an
new SPOE applet is created. On success, we must remove reference on the
current appctx from the streams in the async waiting queue.
This patch must be backported as far as 1.8.
There's no more reason for keepin the code and definitions in conn_stream,
let's move all that to stconn. The alphabetical ordering of include files
was adjusted.
This file contains all the stream-connector functions that are specific
to application layers of type stream. So let's name it accordingly so
that it's easier to figure what's located there.
The alphabetical ordering of include files was preserved.
An equivalent applet_need_more_data() was added as well since that function
is mostly used from applet code. It makes it much clearer that the applet
is waiting for data from the stream layer.
These ones are essentially for the stream endpoint, let's give them a
name that matches the intent. Equivalent versions were provided in the
applet namespace to ease code legibility.
The analysis of cs_rx_endp_more() showed that the purpose is for a stream
endpoint to inform the connector that it's ready to deliver more data to
that one, and conversely cs_rx_endp_done() that it's done delivering data
so it should not be bothered again for this.
This was modified two ways:
- the operation is no longer performed on the connector but on the
endpoint so that there is no more doubt when reading applet code
about what this rx refers to; it's the endpoint that has more or
no more data.
- an applet implementation is also provided and mostly used from
applet code since it saves the caller from having to access the
endpoint descriptor.
It's visible that the flag ought to be inverted because some places
have to set it by default for no reason.
The new name mor eclearly indicates that a stream connector cannot make
any more progress because it needs room in the channel buffer, or that
it may be unblocked because the buffer now has more room available. The
testing function is sc_waiting_room(). This is mostly used by applets.
Note that the flags will change soon.
These functions return the app-layer associated with an stconn, which
is a check, a stream or a stream's task. They're used a lot to access
channels, flags and for waking up tasks. Let's just name them
appropriately for the stream connector.
We're starting to propagate the stream connector's new name through the
API. Most call places of these functions that retrieve the channel or its
buffer are in applets. The local variable names are not changed in order
to keep the changes small and reviewable. There were ~92 uses of cs_ic(),
~96 of cs_oc() (due to co_get*() being less factorizable than ci_put*),
and ~5 accesses to the buffer itself.
This applies the change so that the applet code stops using ci_putchk()
and friends everywhere possible, for the much saferapplet_put*() instead.
The change is mechanical but large. Two or three functions used to have no
appctx and a cs derived from the appctx instead, which was a reminiscence
of old times' stream_interface. These were simply changed to directly take
the appctx. No sensitive change was performed, and the old (more complex)
API is still usable when needed (e.g. the channel is already known).
The change touched roughly a hundred of locations, with no less than 124
lines removed.
It's worth noting that the stats applet, the oldest of the series, could
get a serious lifting, as it's still very channel-centric instead of
propagating the appctx along the chain. Given that this code doesn't
change often, there's no emergency to clean it up but it would look
better.
This also follows the natural naming. There are roughly 238 changes, all
totally trivial. conn_stream-t.h has become completely void of any
"conn_stream" related stuff now (except its name).
This renames the "struct conn_stream" to "struct stconn" and updates
the descriptions in all comments (and the rare help descriptions) to
"stream connector" or "connector". This touches a lot of files but
the change is minimal. The local variables were not even renamed, so
there's still a lot of "cs" everywhere.
labels used in goto statement was not called in the right order. Thus if
there is an error during the appctx startup, it is possible to leak a task.
This patch should fix the issue #1703. No backport needed.
In the same way than for the tasks, the applets api was changed to be able
to start a new appctx on a thread subset. For now the feature is
disabled. Only appctx_new_here() is working. But it will be possible to
start an appctx on a specific thread or a subset via a mask.
A .init callback function is defined for the spoe_applet applet. This
function finishes the spoe_appctx initialization. It also finishes the
appctx startup by calling appctx_finalize_startup() and its handles the
stream customization.
The session created for frontend applets is now totally owns by the
corresponding appctx. It means the appctx is now responsible to release
it. This removes the hack in stream_free() about frontend applets to be sure
to release the session.
The two functions became exact copies since there's no more special case
for the appctx owner. Let's merge them into a single one, that simplifies
the code.
This one is the pointer to the conn_stream which is always in the
endpoint that is always present in the appctx, thus it's not needed.
This patch removes it and replaces it with appctx_cs() instead. A
few occurences that were using __cs_strm(appctx->owner) were moved
directly to appctx_strm() which does the equivalent.
Remaining flags and associated functions are move in the conn-stream
scope. These flags are added on the endpoint and not the conn-stream
itself. This way it will be possible to get them from the mux or the
applet. The functions to get or set these flags are renamed accordingly with
the "cs_" prefix and updated to manipualte a conn-stream instead of a
stream-interface.
si_shutr(), si_shutw(), si_chk_rcv() and si_chk_snd() are moved in the
conn-stream scope and renamed, respectively, cs_shutr(), cs_shutw(),
cs_chk_rcv(), cs_chk_snd() and manipulate a conn-stream instead of a
stream-interface.
The stream-interface state (SI_ST_*) is now in the conn-stream. It is a
mechanical replacement for now. Nothing special. SI_ST_* and SI_SB_* were
renamed accordingly. Utils functions to manipulate these infos were moved
under the conn-stream scope.
But it could be good to keep in mind that this part should be
reworked. Indeed, at the CS level, we only need to know if it is ready to
receive or to send. The state of conn-stream from INI to EST is only used on
the server side. The client CS is immediately set to EST. Thus current
SI_ST_* states should probably be moved to the stream to reflect the server
connection state during the establishment stage.
At many places, we now use the new CS functions to get a stream or a channel
from a conn-stream instead of using the stream-interface API. It is the
first step to reduce the scope of the stream-interfaces. The main change
here is about the applet I/O callback functions. Before the refactoring, the
stream-interface was the appctx owner. Thus, it was heavily used. Now, as
far as possible,the conn-stream is used. Of course, it remains many calls to
the stream-interface API.
The conn-stream endpoint is now shared between the conn-stream and the
applet or the multiplexer. If the mux or the applet is created first, it is
responsible to also create the endpoint and share it with the conn-stream.
If the conn-stream is created first, it is the opposite.
When the endpoint is only owned by an applet or a mux, it is called an
orphan endpoint (there is no conn-stream). When it is only owned by a
conn-stream, it is called a detached endpoint (there is no mux/applet).
The last entity that owns an endpoint is responsible to release it. When a
mux or an applet is detached from a conn-stream, the conn-stream
relinquishes the endpoint to recreate a new one. This way, the endpoint
state is never lost for the mux or the applet.
It is a transient commit to prepare next changes. Now, when a conn-stream is
created from an applet or a multiplexer, an endpoint is always provided. In
addition, the API to create a conn-stream was specialized to have one
function per type.
The next step will be to share the endpoint structure.