Since pool_get_from_cache() and pool_put_to_cache() were now only wrappers
to the local cache versions which do all the job, let's merge them together
so that there is no more local-cache specific function.
Now when pool_get_from_local_cache() fails, it automatically falls back
to pool_get_from_shared_cache(), which used to always be done in
pool_get_from_cache(). Thus now the API is simpler as we always allocate
and free from/to the local caches.
Till now it used to call it only if there were not too many objects into
the local cache otherwise would send the latest one directly into the
shared cache. Now it always sends to the local cache and it's up to the
local cache to free its oldest objects. From a cache freshness perspective
it's better this way since we always evict cold objects instead of hot
ones. From an API perspective it's better because it will help make the
shared cache invisible to the public API.
These two functions are now responsible for allocating directly from
the cache and releasing to the cache.
Now the pool_alloc() function simply does this:
if cache enabled
return pool_alloc_from_cache() if no NULL
return pool_alloc_nocache() otherwise
and the pool_free() function does this:
if cache enabled
pool_put_to_cache()
else
pool_free_nocache()
For now this only introduces these two functions without changing anything
else, but the goal is to soon allow to make them implementation-specific.
Continuing the unification of local and shared pools, now the usage of
pools is governed by CONFIG_HAP_POOLS without which allocations and
releases are performed directly from the OS using pool_alloc_nocache()
and pool_free_nocache().
There are two levels of freeing to the OS:
- code that wants to keep the pool's usage counters updated uses
pool_free_area() and handles the counters itself. That's what
pool_put_to_shared_cache() does in the no-global-pools case.
- code that does not want to update the counters because they were
already updated only calls pool_free_area().
Let's extract these calls to establish the symmetry with pool_get_from_os()
and pool_alloc_nocache(), resulting in pool_put_to_os() (which only updates
the allocated counter) and pool_free_nocache() (which also updates the used
counter). This will later allow to simplify the generic code.
Calling pool_free_area() inside a lock in pool_put_to_shared_cache() is
a very bad idea. Fortunately this only happens on the lowest end platforms
which almost never use threads or in very small counts.
This change consists in zeroing the pointer once already released to the
cache in the first test so that the second stage knows if it needs to
pass it to the OS or not. This has slightly reduced the length of the
A part of the code cannot be factored out because it still uses non-atomic
inc/dec for pool->used and pool->allocated as these are located under the
pool's lock. While it can make sense in terms of bus cycles, it does not
make sense in terms of code normalization. Further, some operations were
still performed under a lock that could be totally removed via the use of
atomic ops.
There is still one occurrence in pool_put_to_shared_cache() in the locked
code where pool_free_area() is called under the lock, which must absolutely
be fixed.
Now there's one part dealing with the allocation itself and keeping
counters up to date, and another one on top of it to return such an
allocated pointer to the user and update the use count and stats.
This is in anticipation for being able to group cache-related parts.
The release code is still done at once.
Till now it was limited to objects allocated from the OS which means
it had little use as soon as pools were enabled. Let's move it upper
in the layers so that any code can benefit from fault injection. In
addition this allows to pass a new flag POOL_F_NO_FAIL to disable it
if some callers prefer a no-failure approach.
Now the multi-level cache becomes more visible:
pool_get_from_local_cache()
pool_put_to_local_cache()
pool_get_from_shared_cache()
pool_put_to_shared_cache()
The functions were rightfully called from/to_cache when the thread-local
cache was considered as the only cache, but this is getting terribly
confusing. Let's call them from/to local_cache to make it clear that
it is not related with the shared cache.
As a side note, since pool_evict_from_cache() used not to work for a
particular pool but for all of them at once, it was renamed to
pool_evict_from_local_caches() (plural form).
This is exactly what it is, the entry is retrieved from the shared
cache when it is defined. The implementation that is enabled with
CONFIG_HAP_NO_GLOBAL_POOLS continues to return NULL.
Now that __pool_alloc() only surrounds __pool_get_first() with the lock,
let's move it to the only variant that requires it and remove the ugly
ifdefs from the function. This is safe because nobody else calls this
function.
In __pool_alloc(), historically we used to use factor out the
pool's lock between __pool_get_first() and __pool_refill_alloc(),
resulting in real malloc() or mmap() calls being performed under
the pool lock (for platforms using the locked shared pools).
As this is not needed anymore, let's move the call out of the
lock, it may improve allocation patterns on some platforms. This
also makes __pool_alloc() cleaner as we see a first attempt to
allocate from the local cache, then a second from the shared
cache then a reall allocation.
They were strictly equivalent, let's remerge them and rename them to
pool_alloc_nocache() as it's the call which performs a real allocation
which does not check nor update the cache. The only difference in the
past was the former taking the lock and not the second but now the lock
is not needed anymore at this stage since the pool's list is not touched.
In addition, given that the "avail" argument is no longer used by the
function nor by its callers, let's drop it.
This is a first step towards unifying all the fallback code. Right now
these two functions are the only ones which do not update the needed_avg
rate counter since there's currently no shared pool kept when using them.
But their code is similar to what could be used everywhere except for
this one, so let's make them capable of maintaining usage statistics.
As a side effect the needed field in "show pools" will now be populated.
We're going to make the local pool always present unless pools are
completely disabled. This means that pools are always enabled by
default, regardless of the use of threads. Let's drop this notion
of "local" pools and make it just "pool". The equivalent debug
option becomes DEBUG_NO_POOLS instead of DEBUG_NO_LOCAL_POOLS.
For now this changes nothing except the option and dropping the
dependency on USE_THREAD.
Initially per-thread pool caches were stored into a fixed-size array.
But this was a bit ugly because the last allocated pools were not able
to benefit from the cache at all. As a work around to preserve
performance, a size of 64 cacheable pools was set by default (there
are 51 pools at the moment, excluding any addon and debugging code),
so all in-tree pools were covered, at the expense of higher memory
usage.
In addition an index had to be calculated for each pool, and was used
to acces the pool cache head into that array. The pool index was not
even stored into the pools so it was required to determine it to access
the cache when the pool was already known.
This patch changes this by moving the pool cache head into the pool
head itself. This way it is certain that each pool will have its own
cache. This removes the need for index calculation.
The pool cache head is 32 bytes long so it was aligned to 64B to avoid
false sharing between threads. The extra cost is not huge (~2kB more
per pool than before), and we'll make better use of that space soon.
The pool cache head contains the size, which should probably be removed
since it's already in the pool's head.
In commit fb117e6a8 ("MEDIUM: memory: don't let pool_put_to_cache() free
the objects itself") pool_evict_from_cache() was introduced with no
argument, yet the only call place passes it the pool, the pointer and
the index number!
Let's remove these as they even let the reader think that the function
does something specific to the current pool while it's not the case.
This patch replaces roughly all occurrences of an HA_ATOMIC_ADD(&foo, 1)
or HA_ATOMIC_SUB(&foo, 1) with the equivalent HA_ATOMIC_INC(&foo) and
HA_ATOMIC_DEC(&foo) respectively. These are 507 changes over 45 files.
The pool_alloc_dirty() function was renamed to __pool_alloc() and now
takes a set of flags indicating whether poisonning is permitted or not
and whether zeroing the area is needed or not. The pool_alloc() function
is now just a wrapper calling __pool_alloc(pool, 0).
This one used to maintain a shortcut in the pools allocation path that
was only justified by b_alloc_fast() which was not used! Let's get rid
of it as well so that the allocator becomes a bit more straight forward.
We've reached a point where the global pools represent a significant
bottleneck with threads. On a 64-core machine, the performance was
divided by 8 between 32 and 64 H2 connections only because there were
not enough entries in the local caches to avoid picking from the global
pools, and the contention on the list there was very high. It becomes
obvious that we need to have an array of lists, but that will require
more changes.
In parallel, standard memory allocators have improved, with tcmalloc
and jemalloc finding their ways through mainstream systems, and glibc
having upgraded to a thread-aware ptmalloc variant, keeping this level
of contention here isn't justified anymore when we have both the local
per-thread pool caches and a fast process-wide allocator.
For these reasons, this patch introduces a new compile time setting
CONFIG_HAP_NO_GLOBAL_POOLS which is set by default when threads are
enabled with thread local pool caches, and we know we have a fast
thread-aware memory allocator (currently set for glibc>=2.26). In this
case we entirely bypass the global pool and directly use the standard
memory allocator when missing objects from the local pools. It is also
possible to force it at compile time when a good allocator is used with
another setup.
It is still possible to re-enable the global pools using
CONFIG_HAP_GLOBAL_POOLS, if a corner case is discovered regarding the
operating system's default allocator, or when building with a recent
libc but a different allocator which provides other benefits but does
not scale well with threads.
The LRU cache head was an array of list, which causes false sharing
between 4 to 8 threads in the same cache line. Let's move it to the
thread_info structure instead. There's no need to do the same for the
pool_cache[] array since it's already quite large (32 pointers each).
By doing this the request rate increased by 1% on a 16-thread machine.
Now the file is ready to be stored into its final destination. A few
minor reorderings were performed to keep the file properly organized,
making the various sections more visible (cache & lockless).
In addition and to stay consistent, memory.c was renamed to pool.c.